Skip to main content

Advertisement

Log in

Optical coherence tomography angiography analysis of retinal vascular plexuses and choriocapillaris in patients with type 1 diabetes without diabetic retinopathy

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

To analyze retinal vascular plexuses and choriocapillaris by optical coherence tomography angiography (OCT-A) and retinal nerve fiber layer and ganglion cell layer (GCL) by structural optical coherence tomography (OCT) in patients with type 1 diabetes mellitus (T1DM) without diabetic retinopathy (DR).

Methods

A total of 25 eyes of 25 consecutive T1DM patients without signs of DR were prospectively recruited and compared to 25 healthy subjects (control eyes). All patients underwent OCT-A (CIRRUS HD-OCT model 5000, Carl Zeiss Meditec, Dublin, CA) and structural OCT. Qualitative and quantitative analyses with vessel density were performed on OCT-A images in the superficial capillary plexus (SCP), deep capillary plexus (DCP) and choriocapillaris for all patients.

Results

By means of OCT-A, a rarefaction of the perifoveal capillary network in SCP was detected in 7 out of 25 eyes. No significant difference was found in FAZ area of both SCP and DCP comparing diabetic and control groups. By analyzing the DCP, diabetic eyes revealed a significant decreased vessel density compared to control eyes [0.464 ± 0.016 and 0.477 ± 0.014, respectively (p = 0.005)]. Instead, no significant difference was found in the vessel density of all-retina plexus, SCP and choriocapillaris. By RFNL and GCL thickness analysis, no significant differences were disclosed between diabetics and healthy subjects.

Conclusions

We demonstrated the ability of OCT-A to disclose early vascular alterations in patients with T1DM diagnosed as without any signs of DR on the basis of fundus biomicroscopy. Our results also suggest that microvascular changes could precede detectable damage of diabetic neuroretinopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Prokofyeva E, Zrenner E (2012) Epidemiology of major eye diseases leading to blindness in Europe: a literature review. Ophthalmic Res 47:171–188

    Article  PubMed  Google Scholar 

  2. Stewart MW (2016) Treatment of diabetic retinopathy: recent advances and unresolved challenges. World J Diabetes 25(7):333–341

    Article  Google Scholar 

  3. Lueder GT, Silverstein J (2005) Screening for retinopathy in the pediatric patient with type 1 diabetes mellitus. Pediatrics 116:270–273

    Article  PubMed  Google Scholar 

  4. Cho YH, Craig ME, Donaghue KC (2014) Puberty as an accelerator for diabetes complications. Pediatr Diabetes 15:18–26

    Article  CAS  PubMed  Google Scholar 

  5. Fong DS, Aiello L, Gardner TW, American Diabetes Association et al (2003) Diabetic Retinopathy. Diabetes Care 26:226–229

    Article  PubMed  Google Scholar 

  6. Yanoff M (1969) Ocular pathology of diabetes mellitus. Am J Ophthalmol 67:21–38

    Article  CAS  PubMed  Google Scholar 

  7. Tooke JE (1993) Microvascular haemodynamics in diabetes. Eye 7:227–229

    Article  PubMed  Google Scholar 

  8. Cade WT (2008) Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Phys Ther 88:1322–1335

    Article  PubMed  PubMed Central  Google Scholar 

  9. Matsunaga DR, Yi JJ, De Koo LO, Ameri H, Puliafito CA, Kashani AH (2015) Optical coherence tomography angiography of diabetic retinopathy in human subjects. Ophthalmic Surg Lasers Imaging Retina 46:796–805

    Article  PubMed  Google Scholar 

  10. Kaidonis G, Gillies MC, Abhary S et al (2016) A single-nucleotide polymorphism in the MicroRNA-146a gene is associated with diabetic nephropathy and sight-threatening diabetic retinopathy in Caucasian patients. Acta Diabetol 53:643–650

    Article  CAS  PubMed  Google Scholar 

  11. Mazzeo A, Beltramo E, Iavello A, Carpanetto A, Porta M (2015) Molecular mechanisms of extracellular vesicle-induced vessel destabilization in diabetic retinopathy. Acta Diabetol 52:1113–1119

    Article  CAS  PubMed  Google Scholar 

  12. Rooney D, Lye WK, Tan G et al (2015) Body mass index and retinopathy in Asian populations with diabetes mellitus. Acta Diabetol 52:73–80

    Article  PubMed  Google Scholar 

  13. Lu J, Hou X, Zhang L et al (2015) Association between body mass index and diabetic retinopathy in Chinese patients with type 2 diabetes. Acta Diabetol 52:701–708

    Article  CAS  PubMed  Google Scholar 

  14. Beltramo E, Lopatina T, Mazzeo A et al (2016) Effects of the neuroprotective drugs somatostatin and brimonidine on retinal cell models of diabetic retinopathy. Acta Diabetol 53:957–964

    Article  CAS  PubMed  Google Scholar 

  15. El-Fayoumi D, Badr Eldine NM, Esmael AF, Ghalwash D, Soliman HM (2016) Retinal nerve fiber layer and ganglion cell complex thicknesses are reduced in children with type 1 diabetes with no evidence of vascular retinopathy. Invest Ophthalmol Vis Sci 57:5355–5360

    Article  CAS  PubMed  Google Scholar 

  16. van Dijk HW, Verbraak FD, Kok PHB et al (2012) Early neurodegeneration in the retina of type 2 diabetic patients. Invest Ophthalmol Vis Sci 53:2715–2719

    Article  PubMed  PubMed Central  Google Scholar 

  17. Vujosevic S, Midena E (2013) Retinal layers changes in human preclinical and early clinical diabetic retinopathy support early retinal neuronal and Müller cells alterations. J Diabetes Res 90:50–58

    Google Scholar 

  18. Tavares Ferreira J, Proença R, Alves M et al (2017) Retina and choroid of diabetic patients without observed retinal vascular changes: a longitudinal study. Am J Ophthalmol. doi:10.1016/j.ajo.2016.12.023

    PubMed  Google Scholar 

  19. De Benedetto U, Sacconi R, Pierro L, Lattanzio R, Bandello F (2015) Optical coherence tomographic hyperreflective foci in early stages of diabetic retinopathy. Retina 35:449–453

    Article  PubMed  Google Scholar 

  20. Bandello F, Corbelli E, Carnevali A, Pierro L, Querques G (2016) Optical coherence tomography angiography of diabetic retinopathy. Dev Ophthalmol 56:107–112

    Article  CAS  PubMed  Google Scholar 

  21. Kim AY, Chu Z, Shahidzadeh A, Wang RK, Puliafito CA, Kashani AH (2016) Quantifying microvascular density and morphology in diabetic retinopathy using spectral-domain optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57:362–370

    Article  Google Scholar 

  22. Dimitrova G, Chihara E, Takahashi H, Amano H, Okazaki K (2017) Quantitative retinal optical coherence tomography angiography in patients with diabetes without diabetic retinopathy. Invest Ophthalmol Vis Sci 58:190–196

    Article  PubMed  Google Scholar 

  23. Simonett JM, Scarinci F, Picconi F et al (2017) Early microvascular retinal changes in optical coherence tomography angiography in patients with type 1 diabetes mellitus. Acta Ophthalmol. doi:10.1111/aos.13404

    PubMed  Google Scholar 

  24. Picconi F, Parravano M, Ylli D et al (2017) Retinal neurodegeneration in patients with type 1 diabetes mellitus: the role of glycemic variability. Acta Diabetol. doi:10.1007/s00592-017-0971-4

    PubMed  PubMed Central  Google Scholar 

  25. Wang RK, Jacques S, Ma Z, Hurst S, Hanson S, Gruber A (2007) Three dimensional optical angiography. Opt Express 15:4083–4097

    Article  PubMed  Google Scholar 

  26. Wang RK (2010) Optical microangiography: a label free 3d imaging technology to visualize and quantify blood circulations within tissue beds in vivo. IEEE J Sel Top Quantum Electron 16:545–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. An L, Wang RK (2008) In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography. Opt Express 16:11438–11452

    Article  PubMed  Google Scholar 

  28. Samara WA, Say EA, Khoo CT et al (2015) Correlation of foveal avascular zone size with foveal morphology in normal eyes using optical coherence tomography angiography. Retina 35:2188–2195

    Article  PubMed  Google Scholar 

  29. Shahlaee A, Pefkianaki M, Hsu J, Ho AC (2016) Measurement of foveal avascular zone dimensions and its reliability in healthy eyes using optical coherence tomography angiography. Am J Ophthalmol 161(50–55):e51

    Google Scholar 

  30. Chidambara L, Gadde SG, Yadav NK et al (2016) Characteristics and quantification of vascular changes in macular telangiectasia type 2 on optical coherence tomography angiography. Br J Ophthalmol. doi:10.1136/bjophthalmol-2015-307941

    PubMed  Google Scholar 

  31. Battaglia Parodi M, Cicinelli MV, Rabiolo A, Pierro L, Bolognesi G, Bandello F (2016) Vascular abnormalities in patients with Stargardt disease assessed with optical coherence tomography angiography. Br J Ophthalmol. doi:10.1136/bjophthalmol-2016-308869

    Google Scholar 

  32. Scarinci F, Nesper PL, Fawzi AA (2016) Deep retinal capillary nonperfusion is associated with photoreceptor disruption in diabetic macular ischemia. Am J Ophthalmol 168:129–138

    Article  PubMed  Google Scholar 

  33. Couturier A, Mané V, Bonnin S et al (2015) Capillary plexus anomalies in diabetic retinopathy on optical coherence tomography angiography. Retina 35:2384–2391

    Article  PubMed  Google Scholar 

  34. de Carlo TE, Chin AT, Bonini Filho MA et al (2015) Detection of microvascular changes in eyes of patients with diabetes but not clinical diabetic retinopathy using optical coherence tomography angiography. Retina 35:2364–2370

    Article  PubMed  Google Scholar 

  35. Freiberg FJ, Pfau M, Wons J, Wirth MA, Becker MD, Michels S (2016) Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 254:1051–1058

    Article  CAS  PubMed  Google Scholar 

  36. Arend O, Wolf S, Jung F et al (1991) Retinal microcirculation in patients with diabetes mellitus: dynamic and morphological analysis of perifoveal capillary network. Br J Ophthalmol 75:514–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sander B, Larsen M, Engler C, Lund-Andersen H, Parving HH (1994) Early changes in diabetic retinopathy: capillary loss and blood-retina barrier permeability in relation to metabolic control. Acta Ophthalmol (Copenh) 72:553–559

    Article  CAS  Google Scholar 

  38. La Spina C, Carnevali A, Marchese A, Querques G, Bandello F (2016) Reproducibility and reliability of optical coherence tomography angiography for foveal avascular zone evaluation and measurement in different settings. Retina. doi:10.1097/IAE.0000000000001426

    Google Scholar 

  39. Reis A, Mateus C, Melo P, Figueira J, Cunha-Vaz J, Castelo-Branco M (2014) Neuroretinal dysfunction with intact blood-retinal barrier and absent vasculopathy in diabetes type 1. Diabetes 63:3926–3937

    Article  CAS  PubMed  Google Scholar 

  40. Yoshida A, Kojima M, Ogasawara H, Ishiko S (1991) Oscillatory potentials and permeability of the blood-retinal barrier in noninsulin-dependent diabetic patients without retinopathy. Ophthalmology 98:1266–1271

    Article  CAS  PubMed  Google Scholar 

  41. Spaide RF, Fujimoto JG, Waheed NK (2015) Image artifacts in optical coherence tomography angiography. Retina 35:2163–2180

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rabiolo A, Carnevali A, Bandello F, Querques G (2016) Optical coherence tomography angiography: Evolution or revolution? expert. Rev of Ophthalmol 11:243–245

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Querques.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Financial disclosures

Adriano Carnevali, Riccardo Sacconi, Eleonora Corbelli, Lea Querques, Gianpaolo Zerbini, Vincenzo Scorcia, Francesco Bandello, Giuseppe Querques: none.

Ethical standard

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Human and animal rights

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008.

Informed consent

Informed consent was obtained from all patients for being included in the study.

Additional information

Managed by Antonio Secchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carnevali, A., Sacconi, R., Corbelli, E. et al. Optical coherence tomography angiography analysis of retinal vascular plexuses and choriocapillaris in patients with type 1 diabetes without diabetic retinopathy. Acta Diabetol 54, 695–702 (2017). https://doi.org/10.1007/s00592-017-0996-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-017-0996-8

Keywords

Navigation