Skip to main content

Advertisement

Log in

Atazanavir improves cardiometabolic measures but not vascular function in patients with long-standing type 1 diabetes mellitus

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

Vascular disease is the leading cause of morbidity and mortality in type 1 diabetes mellitus (T1DM). We previously demonstrated that patients with T1DM have impaired endothelial function, a forme fruste of atherosclerosis, as a result of increased oxidative stress. Bilirubin has emerged as a potent endogenous antioxidant with higher concentrations associated with lower rates of myocardial infarction and stroke.

Methods

We tested the hypothesis that increasing endogenous bilirubin using atazanavir would improve cardiometabolic risk factors and vascular function in patients with T1DM to determine whether targeting bilirubin may be a novel therapeutic approach to reduce cardiovascular disease risk in this population. In this single-arm, open-label study, we evaluated blood pressure, lipid profile, and conduit artery function in fifteen subjects (mean age 45 ± 9 years) with T1DM following a 4-day treatment with atazanavir.

Results

As anticipated, atazanavir significantly increased both serum total bilirubin levels (p < 0.0001) and plasma total antioxidant capacity (p < 0.0001). Reductions in total cholesterol (p = 0.04), LDL cholesterol (p = 0.04), and mean arterial pressure (p = 0.04) were also observed following atazanavir treatment. No changes were seen in either flow-mediated endothelium-dependent (p = 0.92) or nitroglycerine-mediated endothelium-independent (p = 0.68) vasodilation, measured by high-resolution B-mode ultrasonography at baseline and post-treatment.

Conclusion

Increasing serum bilirubin levels with atazanavir in subjects with T1DM over 4 days favorably reduces LDL and blood pressure but is not associated with improvements in endothelial function of conduit arteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Beckman JA et al (2013) Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part II. Eur Heart J 34(31):2444–2452

    Article  PubMed  Google Scholar 

  2. De Vriese AS et al (2000) Endothelial dysfunction in diabetes. Br J Pharmacol 130(5):963–974

    Article  PubMed Central  PubMed  Google Scholar 

  3. Stamler JS et al (1994) Nitric oxide regulates basal systemic and pulmonary vascular resistance in healthy humans. Circulation 89(5):2035–2040

    Article  CAS  PubMed  Google Scholar 

  4. Forstermann U, Munzel T (2006) Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 113(13):1708–1714

    Article  PubMed  Google Scholar 

  5. Nishikawa T et al (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404(6779):787–790

    Article  CAS  PubMed  Google Scholar 

  6. Beckman JA et al (2001) Ascorbate restores endothelium-dependent vasodilation impaired by acute hyperglycemia in humans. Circulation 103(12):1618–1623

    Article  CAS  PubMed  Google Scholar 

  7. Gokce N et al (2002) Risk stratification for postoperative cardiovascular events via noninvasive assessment of endothelial function: a prospective study. Circulation 105(13):1567–1572

    Article  PubMed  Google Scholar 

  8. Heitzer T et al (2001) Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation 104(22):2673–2678

    Article  CAS  PubMed  Google Scholar 

  9. Johnstone MT et al (1993) Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation 88(6):2510–2516

    Article  CAS  PubMed  Google Scholar 

  10. Beckman JA et al (2003) Oral antioxidant therapy improves endothelial function in Type 1 but not Type 2 diabetes mellitus. Am J Physiol Heart Circ Physiol 285(6):H2392–H2398

    Article  CAS  PubMed  Google Scholar 

  11. Timimi FK et al (1998) Vitamin C improves endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. J Am Coll Cardiol 31(3):552–557

    Article  CAS  PubMed  Google Scholar 

  12. Heart Protection Study Collaborative Group (2002) MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 360(9326):23–33

    Article  Google Scholar 

  13. Stocker R et al (1987) Bilirubin is an antioxidant of possible physiological importance. Science 235(4792):1043–1046

    Article  CAS  PubMed  Google Scholar 

  14. Perlstein TS et al (2008) Serum total bilirubin level and prevalent lower-extremity peripheral arterial disease: National Health and Nutrition Examination Survey (NHANES) 1999–2004. Arterioscler Thromb Vasc Biol 28(1):166–172

    Article  CAS  PubMed  Google Scholar 

  15. Perlstein TS et al (2008) Serum total bilirubin level, prevalent stroke, and stroke outcomes: NHANES 1999–2004. Am J Med 121(9):781e1–788e1

    Article  Google Scholar 

  16. Vitek L et al (2002) Gilbert syndrome and ischemic heart disease: a protective effect of elevated bilirubin levels. Atherosclerosis 160(2):449–456

    Article  CAS  PubMed  Google Scholar 

  17. Dekker D et al (2011) The bilirubin-increasing drug atazanavir improves endothelial function in patients with type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol 31(2):458–463

    Article  CAS  PubMed  Google Scholar 

  18. Ollinger R et al (2005) Bilirubin: a natural inhibitor of vascular smooth muscle cell proliferation. Circulation 112(7):1030–1039

    Article  PubMed  Google Scholar 

  19. Forstermann U (2008) Oxidative stress in vascular disease: causes, defense mechanisms and potential therapies. Nat Clin Pract Cardiovasc Med 5(6):338–349

    Article  PubMed  Google Scholar 

  20. Wood R (2008) Atazanavir: its role in HIV treatment. Expert Rev Anti Infect Ther 6(6):785–796

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. American Diabetes, A. (2010) Standards of medical care in diabetes–2010. Diabetes Care 33(Suppl 1):S11–S61

    Article  Google Scholar 

  22. Beckman JA et al (2004) Atorvastatin restores endothelial function in normocholesterolemic smokers independent of changes in low-density lipoprotein. Circ Res 95(2):217–223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Beckman JA et al (2007) Endothelial function varies according to insulin resistance disease type. Diabetes Care 30(5):1226–1232

    Article  PubMed  Google Scholar 

  24. Nohria A et al (2014) The effect of salsalate therapy on endothelial function in a broad range of subjects. J Am Heart Assoc 3(1):e000609

    Article  PubMed Central  PubMed  Google Scholar 

  25. Corretti MC et al (2002) Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol 39(2):257–265

    Article  PubMed  Google Scholar 

  26. Lieberman EH et al (1996) Flow-induced vasodilation of the human brachial artery is impaired in patients <40 years of age with coronary artery disease. Am J Cardiol 78(11):1210–1214

    Article  CAS  PubMed  Google Scholar 

  27. Owens CD et al (2009) In vivo human lower extremity saphenous vein bypass grafts manifest flow mediated vasodilation. J Vasc Surg 50(5):1063–1070

    Article  PubMed Central  PubMed  Google Scholar 

  28. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239(1):70–76

    Article  CAS  PubMed  Google Scholar 

  29. Paneni F et al (2013) Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Eur Heart J 34(31):2436–2443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Inoguchi T et al (2007) Relationship between Gilbert syndrome and prevalence of vascular complications in patients with diabetes. JAMA 298(12):1398–1400

    Article  CAS  PubMed  Google Scholar 

  31. Murphy RL et al (2010) Change to atazanavir/ritonavir treatment improves lipids but not endothelial function in patients on stable antiretroviral therapy. AIDS 24(6):885–890

    Article  CAS  PubMed  Google Scholar 

  32. Flammer AJ et al (2009) Effect of atazanavir versus other protease inhibitor-containing antiretroviral therapy on endothelial function in HIV-infected persons: randomised controlled trial. Heart 95(5):385–390

    Article  CAS  PubMed  Google Scholar 

  33. Dube MP et al (2008) No impairment of endothelial function or insulin sensitivity with 4 weeks of the HIV protease inhibitors atazanavir or lopinavir-ritonavir in healthy subjects without HIV infection: a placebo-controlled trial. Clin Infect Dis 47(4):567–574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Hileman C et al (2012) Relationship between total bilirubin and endothelial function, inflammation and oxidative stress in HIV-infected adults on stable antiretroviral therapy. HIV Med 13(10):609–616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Ingram DG et al (2007) Chronic nitric oxide synthase inhibition blunts endothelium-dependent function of conduit coronary arteries, not arterioles. Am J Physiol Heart Circ Physiol 292(6):H2798–H2808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Ohara Y, Peterson TE, Harrison DG (1993) Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 91(6):2546–2551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Guzik TJ et al (2000) Vascular superoxide production by NAD(P)H oxidase: association with endothelial dysfunction and clinical risk factors. Circ Res 86(9):E85–E90

    Article  CAS  PubMed  Google Scholar 

  38. Fukui T et al (1997) p22phox mRNA expression and NADPH oxidase activity are increased in aortas from hypertensive rats. Circ Res 80(1):45–51

    Article  CAS  PubMed  Google Scholar 

  39. Mehta JL et al (1994) Alterations in nitric oxide synthase activity, superoxide anion generation, and platelet aggregation in systemic hypertension, and effects of celiprolol. Am J Cardiol 74(9):901–905

    Article  CAS  PubMed  Google Scholar 

  40. Yusuf S et al (2000) Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The heart outcomes prevention evaluation study investigators. N Engl J Med 342(3):145–153

    Article  CAS  PubMed  Google Scholar 

  41. Curb JD et al (1996) Effect of diuretic-based antihypertensive treatment on cardiovascular disease risk in older diabetic patients with isolated systolic hypertension. Systolic hypertension in the elderly program cooperative research group. JAMA 276(23):1886–1892

    Article  CAS  PubMed  Google Scholar 

  42. Tuomilehto J et al (1999) Effects of calcium-channel blockade in older patients with diabetes and systolic hypertension. Systolic hypertension in Europe trial investigators. N Engl J Med 340(9):677–684

    Article  CAS  PubMed  Google Scholar 

  43. Goldberg RB et al (1998) Cardiovascular events and their reduction with pravastatin in diabetic and glucose-intolerant myocardial infarction survivors with average cholesterol levels: subgroup analyses in the cholesterol and recurrent events (CARE) trial. The care investigators. Circulation 98(23):2513–2519

    Article  CAS  PubMed  Google Scholar 

  44. Cholesterol Treatment Trialists (2008) Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet 371(9607):117–125

    Article  Google Scholar 

  45. Collins R et al (2003) MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet 361(9374):2005–2016

    Article  PubMed  Google Scholar 

  46. Madhavan M et al (1997) Serum bilirubin distribution and its relation to cardiovascular risk in children and young adults. Atherosclerosis 131(1):107–113

    Article  CAS  PubMed  Google Scholar 

  47. Tapan S et al (2011) Decreased small dense LDL levels in Gilbert’s syndrome. Clin Biochem 44(4):300–303

    Article  CAS  PubMed  Google Scholar 

  48. Kodama S et al (2014) Meta-analysis of the quantitative relation between pulse pressure and mean arterial pressure and cardiovascular risk in patients with diabetes mellitus. Am J Cardiol 113(6):1058–1065

    Article  PubMed  Google Scholar 

  49. Oda E, Aizawa Y (2013) Total bilirubin is inversely associated with metabolic syndrome but not a risk factor for metabolic syndrome in Japanese men and women. Acta Diabetol 50(3):417–422

    Article  CAS  PubMed  Google Scholar 

  50. Di Filippo C et al (2006) Oxidative stress as the leading cause of acute myocardial infarction in diabetics. Cardiovasc Drug Rev 24(2):77–87

    Article  PubMed  Google Scholar 

  51. Aksoy S et al (2012) Oxidative stress and severity of coronary artery disease in young smokers with acute myocardial infarction. Cardiol J 19(4):381–386

    Article  PubMed  Google Scholar 

  52. McMurray J et al (1993) Evidence of oxidative stress in chronic heart failure in humans. Eur Heart J 14(11):1493–1498

    Article  CAS  PubMed  Google Scholar 

  53. Keshavan P et al (2005) Unconjugated bilirubin inhibits VCAM-1-mediated transendothelial leukocyte migration. J Immunol 174(6):3709–3718

    Article  CAS  PubMed  Google Scholar 

  54. World Medical Association (2009) I., Declaration of Helsinki. Ethical principles for medical research involving human subjects. J Indian Med Assoc 107(6):403–405

    Google Scholar 

Download references

Acknowledgments

Dr. Beckman is supported by National Institutes of Health, National Institute of Diabetes, Digestive and Kidney Disease Grant 1R03 DK094510-01. Dr. Goldfine is supported by NIDDK Diabetes Research Center Grant P30DK036836. The content of this manuscript is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.

Conflict of interest

Dr. Goldfine, Mr. Zuflacht, Ms. Parmer, and Ms. Milian have no conflicts of interest. Dr. Beckman has received honoraria for consulting and support for investigator-initiated research from Bristol Myers Squibb.

Ethical standard

The protocol was approved by the Partners Human Research Committee of Brigham and Women’s Hospital and all subjects provided informed consent.

Human and animal rights disclosure

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008 [54].

Informed consent disclosure

Informed consent was obtained from all patients for being included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua A. Beckman.

Additional information

Managed by Massimo Federici.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milian, J., Goldfine, A.B., Zuflacht, J.P. et al. Atazanavir improves cardiometabolic measures but not vascular function in patients with long-standing type 1 diabetes mellitus. Acta Diabetol 52, 709–715 (2015). https://doi.org/10.1007/s00592-014-0708-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-014-0708-6

Keywords

Navigation