Skip to main content
Log in

Structural vertebral endplate nomenclature and etiology: a study by the ISSLS Spinal Phenotype Focus Group

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Vertebral endplate abnormalities may be associated with disc degeneration and, perhaps, pain generation. However, consensus definitions for endplate findings on spine MRI do not exist, posing a challenge to compare findings between studies and ethnic groups. The following survey was created to characterize the variability among the global spine community regarding endplate structural findings with respect to nomenclature and etiology.

Methods

A working group within the International Society for the Study of the Lumbar Spine (ISSLS) Spinal Phenotype Focus Group was established to assess the endplate phenotype. A survey which consisted of 13 T2-weighted sagittal MRIs of the human lumbar spine illustrating the superior and inferior endplates was constructed based on discussion and agreement by the working group. A list of nomenclature and etiological terms with historical precedence was generated. Participants were asked to describe the endplates of each image and select from 14 possible nomenclatures and 10 etiological terms along with the option of free text response. The survey was entered into RedCap and was circulated throughout the ISSLS membership for data capture. Participants’ demographics were also noted.

Results

The survey was completed by 55 participants (87% males; 85% above 45 years of age, 39 clinicians, and 16 researchers). Sixty-eight percent of researchers and seventy-four percent of clinicians reported more than 16 and 20 years of research and clinical experience. Considerable variation existed in selection of nomenclature, etiology, and degree of severity of the endplate structural findings (reliability coefficients for single measures in each case were 0.3, 0.08, and 0.2, respectively). Sixty-seven percent regarded Modic changes as being a structural endplate finding. Approximately 84 and 80% of clinicians and researchers, respectively, agreed that a standardized endplate nomenclature and understanding the etiology is clinically important and needed.

Conclusions

This study found that variations exist with respect to endplate nomenclature and etiology between clinicians and basic scientists, and paves the way for a consensus process to formalize the definitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Moore RJ (2000) The vertebral end-plate: what do we know? Eur Spine J 9:92–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mok FP, Samartzis D, Karppinen J, Luk KD, Fong DY, Cheung KM (2010) ISSLS prize winner: prevalence, determinants, and association of Schmorl nodes of the lumbar spine with disc degeneration: a population-based study of 2449 individuals. Spine (Phila Pa 1976) 35:1944–1952

    Article  Google Scholar 

  3. Samartzis D, Mok FP, Karppinen J, Fong DY, Luk KD, Cheung KM (2016) Classification of Schmorl’s nodes of the lumbar spine and association with disc degeneration: a large-scale population-based MRI study. Osteoarthr Cartil 24:1753–1760

    Article  CAS  PubMed  Google Scholar 

  4. Wang Y, Videman T, Battie MC (2012) Lumbar vertebral endplate lesions: prevalence, classification, and association with age. Spine (Phila Pa 1976) 37:1432–1439

    Article  Google Scholar 

  5. Grunhagen T, Shirazi-Adl A, Fairbank JC, Urban JP (2011) Intervertebral disk nutrition: a review of factors influencing concentrations of nutrients and metabolites. Orthop Clin North Am 42:465–477 (vii)

    Article  PubMed  Google Scholar 

  6. Urban JP, Smith S, Fairbank JC (2004) Nutrition of the intervertebral disc. Spine (Phila Pa 1976) 29:2700–2709

    Article  Google Scholar 

  7. Rajasekaran S, Babu JN, Arun R, Armstrong BR, Shetty AP, Murugan S (2004) ISSLS prize winner: a study of diffusion in human lumbar discs: a serial magnetic resonance imaging study documenting the influence of the endplate on diffusion in normal and degenerate discs. Spine (Phila Pa 1976) 29:2654–2667

    Article  CAS  Google Scholar 

  8. Wang Y, Videman T, Battie MC (2012) ISSLS prize winner: Lumbar vertebral endplate lesions: associations with disc degeneration and back pain history. Spine (Phila Pa 1976) 37:1490–1496

    Article  Google Scholar 

  9. Maatta JH, Wadge S, MacGregor A, Karppinen J, Williams FM (2015) ISSLS prize winner: vertebral endplate (Modic) change is an independent risk factor for episodes of severe and disabling low back pain. Spine (Phila Pa 1976) 40:1187–1193

    Article  Google Scholar 

  10. Fields AJ, Liebenberg EC, Lotz JC (2014) Innervation of pathologies in the lumbar vertebral endplate and intervertebral disc. Spine J 14:513–521

    Article  PubMed  Google Scholar 

  11. Mok FP, Samartzis D, Karppinen J, Fong DY, Luk KD, Cheung KM (2016) Modic changes of the lumbar spine: prevalence, risk factors, and association with disc degeneration and low back pain in a large-scale population-based cohort. Spine J 16:32–41

    Article  PubMed  Google Scholar 

  12. Määttä JH, Karppinen J, Paananen M et al (2016) Refined phenotyping of modic changes: imaging biomarkers of prolonged severe low back pain and disability. Medicine 95:e3495

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hsu KY, Zucherman JF, Derby R, White AH, Goldthwaite N, Wynne G (1988) Painful lumbar end-plate disruptions: a significant discographic finding. Spine (Phila Pa 1976) 13:76–78

    Article  CAS  Google Scholar 

  14. Williams FM, Manek NJ, Sambrook PN, Spector TD, Macgregor AJ (2007) Schmorl’s nodes: common, highly heritable, and related to lumbar disc disease. Arthritis Rheum 57:855–860

    Article  CAS  PubMed  Google Scholar 

  15. Rajasekaran S, Venkatadass K, Naresh Babu J, Ganesh K, Shetty AP (2008) Pharmacological enhancement of disc diffusion and differentiation of healthy, ageing and degenerated discs: results from in vivo serial post-contrast MRI studies in 365 human lumbar discs. Eur Spine J 17:626–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Von Forell GA, Nelson TG, Samartzis D, Bowden AE (2014) Changes in vertebral strain energy correlate with increased presence of Schmorl’s nodes in multi-level lumbar disk degeneration. J Biomech Eng 136:061002

    Article  Google Scholar 

  17. Adams MA, McNally DS, Wagstaff J, Goodship AE (1993) Abnormal stress concentrations in lumbar intervertebral discs following damage to the vertebral bodies: a cause of disc failure? Eur Spine J 1:214–221

    Article  CAS  PubMed  Google Scholar 

  18. Adams MA, Freeman BJC, Morrison HP, Nelson IW, Dolan P (2000) Mechanical initiation of intervertebral disc degeneration. Spine 25:1625–1636

    Article  CAS  PubMed  Google Scholar 

  19. Dolan P, Luo J, Pollintine P, Landham PR, Stefanakis M, Adams MA (2013) Intervertebral disc decompression following endplate damage: implications for disc degeneration depend on spinal level and age. Spine 38:1473–1481

    Article  PubMed  Google Scholar 

  20. Wang Y, Videman T, Battie MC (2013) Morphometrics and lesions of vertebral end plates are associated with lumbar disc degeneration: evidence from cadaveric spines. J Bone Jt Surg Am 95:e26

    Article  Google Scholar 

  21. Hilton RC, Ball J, Benn RT (1976) Vertebral end-plate lesions (Schmorl’s nodes) in the dorsolumbar spine. Ann Rheum Dis 35:127–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pfirrmann CW, Resnick D (2001) Schmorl nodes of the thoracic and lumbar spine: radiographic-pathologic study of prevalence, characterization, and correlation with degenerative changes of 1,650 spinal levels in 100 cadavers. Radiology 219:368–374

    Article  CAS  PubMed  Google Scholar 

  23. González-Reimers E, Mas-Pascual M, Arnay-de-la-Rosa M, Velasco-Vázquez J, Santolaria-Fernández F (2002) Schmorl nodes: lack of relationship between degenerative changes and osteopenia. Radiology 222:293–294

    Article  PubMed  Google Scholar 

  24. Vernon-Roberts B, Pirie CJ (1977) Degenerative changes in the intervertebral discs of the lumbar spine and their sequelae. Rheumatol Rehabil 16:13–21

    Article  CAS  PubMed  Google Scholar 

  25. McCall IW, Park WM, O’Brien JP, Seal V (1985) Acute traumatic intraosseous disc herniation. Spine (Phila Pa 1976) 10:134–137

    Article  CAS  Google Scholar 

  26. Wagner AL, Murtagh FR, Arrington JA, Stallworth D (2000) Relationship of Schmorl’s nodes to vertebral body endplate fractures and acute endplate disk extrusions. AJNR Am J Neuroradiol 21:276–281

    CAS  PubMed  Google Scholar 

  27. Kyere KA, Than KD, Wang AC et al (2012) Schmorl’s nodes. Eur Spine J 21:2115–2121

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sward L, Hellstrom M, Jacobsson B, Peterson L (1990) Back pain and radiologic changes in the thoraco-lumbar spine of athletes. Spine (Phila Pa 1976) 15:124–129

    Article  CAS  Google Scholar 

  29. Martel W, Seeger JF, Wicks JD, Washburn RL (1976) Traumatic lesions of the discovertebral junction in the lumbar spine. AJR Am J Roentgenol 127:457–464

    Article  CAS  PubMed  Google Scholar 

  30. Hauger O, Cotten A, Chateil JF, Borg O, Moinard M, Diard F (2001) Giant cystic Schmorl’s nodes: imaging findings in six patients. AJR Am J Roentgenol 176:969–972

    Article  CAS  PubMed  Google Scholar 

  31. Sahlman J, Inkinen R, Hirvonen T et al (2001) Premature vertebral endplate ossification and mild disc degeneration in mice after inactivation of one allele belonging to the Col2a1 gene for Type II collagen. Spine (Phila Pa 1976) 26:2558–2565

    Article  CAS  Google Scholar 

  32. Jim JJ, Noponen-Hietala N, Cheung KM et al (2005) The TRP2 allele of COL9A2 is an age-dependent risk factor for the development and severity of intervertebral disc degeneration. Spine (Phila Pa 1976) 30:2735–2742

    Article  Google Scholar 

  33. Eskola PJ, Lemmela S, Kjaer P et al (2012) Genetic association studies in lumbar disc degeneration: a systematic review. PLoS ONE 7:e49995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Eskola PJ, Mannikko M, Samartzis D, Karppinen J (2014) Genome-wide association studies of lumbar disc degeneration–are we there yet? Spine J 14:479–482

    Article  PubMed  Google Scholar 

  35. Kokkonen SM, Kurunlahti M, Tervonen O, Ilkko E, Vanharanta H (2002) Endplate degeneration observed on magnetic resonance imaging of the lumbar spine: correlation with pain provocation and disc changes observed on computed tomography diskography. Spine (Phila Pa 1976) 27:2274–2278

    Article  Google Scholar 

  36. Takahashi K, Miyazaki T, Ohnari H, Takino T, Tomita K (1995) Schmorl’s nodes and low-back pain. Analysis of magnetic resonance imaging findings in symptomatic and asymptomatic individuals. Eur Spine J 4:56–59

    Article  CAS  PubMed  Google Scholar 

  37. Abu-Ghanem S, Ohana N, Abu-Ghanem Y, Kittani M, Shelef I (2013) Acute Schmorl node in dorsal spine: an unusual cause of a sudden onset of severe back pain in a young female. Asian Spine J 7:131–135

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chou D, Samartzis D, Bellabarba C et al (2011) Degenerative magnetic resonance imaging changes in patients with chronic low back pain: a systematic review. Spine (Phila Pa 1976) 36:S43–S53

    Article  Google Scholar 

  39. Perey O (1957) Fracture of the vertebral end-plate in the lumbar spine; an experimental biochemical investigation. Acta Orthop Scand Suppl 25:1–101

    Article  CAS  PubMed  Google Scholar 

  40. Zehra U, Flower L, Robson-Brown K, Adams MA, Dolan P (2017) Defects of the vertebral endplate: implications for disc degeneration depend on size. Spine J 17:727–737

    Article  PubMed  Google Scholar 

  41. Yoganandan N, Maiman DJ, Pintar F et al (1988) Microtrauma in the lumbar spine: a cause of low back pain. Neurosurgery 23:162–168

    Article  CAS  PubMed  Google Scholar 

  42. Hilton RC, Ball J (1984) Vertebral rim lesions in the dorsolumbar spine. Ann Rheum Dis 43:302–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schmorl G (1927) Die pathologische Anatomie der Wirbelsaule. Verh Dtsch Path Ges 21:3–41

    Google Scholar 

  44. Hansson T, Roos B (1983) The amount of bone mineral and Schmorl’s nodes in lumbar vertebrae. Spine (Phila Pa 1976) 8:266–271

    Article  CAS  Google Scholar 

  45. Stabler A, Bellan M, Weiss M, Gartner C, Brossmann J, Reiser MF (1997) MR imaging of enhancing intraosseous disk herniation (Schmorl’s nodes). AJR Am J Roentgenol 168:933–938

    Article  CAS  PubMed  Google Scholar 

  46. Smith DM (1976) Acute back pain associated with a calcified Schmorl’s node: a case report. Clin Orthop Relat Res 117: 193–196

    Google Scholar 

  47. Lipson SJ, Fox DA, Sosman JL (1985) Symptomatic intravertebral disc herniation (Schmorl’s node) in the cervical spine. Ann Rheum Dis 44:857–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Albert HB, Kjaer P, Jensen TS, Sorensen JS, Bendix T, Manniche C (2008) Modic changes, possible causes and relation to low back pain. Med Hypotheses 70:361–368

    Article  CAS  PubMed  Google Scholar 

  49. Jensen TS, Bendix T, Sorensen JS, Manniche C, Korsholm L, Kjaer P (2009) Characteristics and natural course of vertebral endplate signal (Modic) changes in the Danish general population. BMC Musculoskelet Disord 10:81

    Article  PubMed  PubMed Central  Google Scholar 

  50. Maatta JH, Karppinen J, Paananen M et al (2016) Refined phenotyping of Modic changes: imaging biomarkers of prolonged severe low back pain and disability. Med (Baltim) 95:e3495

    Article  Google Scholar 

  51. Maatta JH, Karppinen JI, Luk KD, Cheung KM, Samartzis D (2015) Phenotype profiling of Modic changes of the lumbar spine and its association with other MRI phenotypes: a large-scale population-based study. Spine J 15:1933–1942

    Article  PubMed  Google Scholar 

  52. Modic MT, Steinberg PM, Ross JS, Masaryk TJ, Carter JR (1988) Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology 166:193–199

    Article  CAS  PubMed  Google Scholar 

  53. Toyone T, Takahashi K, Kitahara H, Yamagata M, Murakami M, Moriya H (1994) Vertebral bone-marrow changes in degenerative lumbar disc disease. An MRI study of 74 patients with low back pain. J Bone Jt Surg Br 76:757–764

    CAS  Google Scholar 

  54. Kuisma M, Karppinen J, Niinimaki J et al (2007) Modic changes in endplates of lumbar vertebral bodies: prevalence and association with low back and sciatic pain among middle-aged male workers. Spine (Phila Pa 1976) 32:1116–1122

    Article  Google Scholar 

  55. Kjaer P, Korsholm L, Bendix T, Sorensen JS, Leboeuf-Yde C (2006) Modic changes and their associations with clinical findings. Eur Spine J 15:1312–1319

    Article  PubMed  PubMed Central  Google Scholar 

  56. Rahme R, Moussa R (2008) The modic vertebral endplate and marrow changes: pathologic significance and relation to low back pain and segmental instability of the lumbar spine. AJNR Am J Neuroradiol 29:838–842

    Article  CAS  PubMed  Google Scholar 

  57. Dudli S, Fields AJ, Samartzis D, Karppinen J, Lotz JC (2016) Pathobiology of Modic changes. Eur Spine J 25:3723–3734

    Article  PubMed  PubMed Central  Google Scholar 

  58. Dudli S, Sing DC, Hu SS, et al. (2017) Intervertebral disc/bone marrow cross-talk with Modic changes. Eur Spine J 26:1362–4955

    Article  PubMed  Google Scholar 

  59. Zhang YH, Zhao CQ, Jiang LS, Chen XD, Dai LY (2008) Modic changes: a systematic review of the literature. Eur Spine J 17:1289–1299

    Article  PubMed  PubMed Central  Google Scholar 

  60. Vavken P, Ganal-Antonio AKB, Shen FH, Chapman JR, Samartzis D (2015) Fundamentals of clinical outcomes assessment for spinal disorders: study designs, methodologies, and analyses. Global Spine J 5:156–164

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chen H, Jiang D, Ou Y, Zhong J, Lv F (2011) Geometry of thoracolumbar vertebral endplates of the human spine. Eur Spine J 20:1814–1820

    Article  PubMed  PubMed Central  Google Scholar 

  62. Oetgen ME, Yue JJ, la Torre JJJ, Bertagnoli R (2008) Does vertebral endplate morphology influence outcomes in lumbar total disc arthroplasty? Part II: clinical and radiographic results as evaluated utilizing the Vertebral Endplate Yue-Bertagnoli (VEYBR) classification. Sas j 2:101–106

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lakshmanan P, Purushothaman B, Dvorak V, Schratt W, Thambiraj S, Boszczyk M (2012) Sagittal endplate morphology of the lower lumbar spine. Eur Spine J 21(Suppl 2):S160–S164

    Article  PubMed  Google Scholar 

  64. Yao-sheng L, Qi-xin C, Shu-bin L (2008) Endplate concavity variation of lumbar motion segments: a finite element analysis. J Clin Rehabil Tissue Eng Res 12:8765–8770

    Google Scholar 

  65. He X, Liang A, Gao W et al (2012) The relationship between concave angle of vertebral endplate and lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 37:E1068–E1073

    Article  Google Scholar 

  66. Pappou IP, Cammisa FP Jr, Girardi FP (2007) Correlation of end plate shape on MRI and disc degeneration in surgically treated patients with degenerative disc disease and herniated nucleus pulposus. Spine J 7:32–38

    Article  PubMed  Google Scholar 

  67. Dar G, Peleg S, Masharawi Y, Steinberg N, May H, Hershkovitz I (2009) Demographical aspects of Schmorl nodes: a skeletal study. Spine (Phila Pa 1976) 34:E312–E315

    Article  Google Scholar 

  68. Chandraraj S, Briggs CA, Opeskin K (1998) Disc herniations in the young and end-plate vascularity. Clin Anat 11:171–176

    Article  CAS  PubMed  Google Scholar 

  69. Dudli S, Haschtmann D, Ferguson SJ (2012) Fracture of the vertebral endplates, but not equienergetic impact load, promotes disc degeneration in vitro. J Orthop Res 30:809–816

    Article  PubMed  Google Scholar 

  70. Holm S, Holm AK, Ekstrom L, Karladani A, Hansson T (2004) Experimental disc degeneration due to endplate injury. J Spinal Disord Tech 17:64–71

    Article  PubMed  Google Scholar 

  71. Sahoo MM, Mahapatra SK, Kaur S, Sarangi J, Mohapatra M (2017) Significance of vertebral endplate failure in symptomatic lumbar disc herniation. Global Spine J 7:230–238

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dino Samartzis.

Ethics declarations

Conflict of interest

The authors have no financial or competing interests to disclose.

Funding

This work was supported by grants from the Hong Kong Theme-Based Research Scheme (T12-708/12N), Hong Kong Research Grants Council (777111), and the International Society for the Study of the Lumbar Spine MacNab/LaRocca Award.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zehra, U., Bow, C., Lotz, J.C. et al. Structural vertebral endplate nomenclature and etiology: a study by the ISSLS Spinal Phenotype Focus Group. Eur Spine J 27, 2–12 (2018). https://doi.org/10.1007/s00586-017-5292-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-017-5292-3

Keywords

Navigation