Skip to main content
Log in

Design of mulitlevel OLF approach (“V”-shaped decompressive laminoplasty) based on 3D printing technology

  • Case Report
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

To introduce a new surgical approach to the multilevel ossification of the ligamentum flavum (OLF) aided by three-dimensional (3D) printing technology.

Methods

A multilevel OLF patient (male, 66 years) was scanned using computed tomography (CT). His saved DICOM format data were inputted to the Mimics14.0 3D reconstruction software (Materialise, Belgium). The resulting 3D model was used to observe the anatomical features of the multilevel OLF area and to design the surgical approach. At the base of the spinous process, two channels were created using an osteotomy bilaterally to create a “V” shape to remove the bone ligamentous complex (BLC). The decompressive laminoplasty using mini-plate fixation was simulated with the computer. The physical model was manufactured using 3D printing technology. The patient was subsequently treated using the designed surgery.

Result

The operation was completed successfully without any complications. The operative time was 90 min, and blood loss was 200 ml. One month after the operation, neurologic function was recovered well, and the JOA score was improved from 6 preoperatively to 10. Postoperative CT scanning showed that the OLF was totally removed, and the replanted BLC had not subsided.

Conclusion

3D printing technology is an effective, reliable, and minimally invasive method to design operations. The technique can be an option for multilevel OLF surgical treatment. This can provide sufficient decompression with minimum damage to the spine and other intact anatomical structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Miyakoshi N, Shimada Y, Suzuki T, Hongo M, Kasukawa Y, Okada K, Itoi E (2003) Factors related to long-term outcome after decompressive surgery for ossification of the ligamentum flavum of the thoracic spine. J Neurosurg 99(3 Suppl):251–256

    PubMed  Google Scholar 

  2. D’Urso PS, Askin G, Earwaker JS, Merry GS, Thompson RG, Barker TM, Effeney DJ (1999) Spinal biomodeling. Spine 24(12):1247–1251

    Article  PubMed  Google Scholar 

  3. van Dijk M, Smit TH, Jiya TU, Wuisman PI (2001) Polyurethane real-size models used in planning complex spinal surgery. Spine 26(17):1920–1926

    Article  PubMed  Google Scholar 

  4. Izatt MT, Thorpe PL, Thompson RG, D’Urso PS, Adam CJ, Earwaker JW, Labrom RD, Askin GN (2007) The use of physical biomodelling in complex spinal surgery. Eur Spine J 16(9):1507

    Article  PubMed  PubMed Central  Google Scholar 

  5. Paiva WS, Amorim R, Bezerra DA, Masini M (2007) Aplication of the stereolithography technique in complex spine surgery. Arq Neuropsiquiatr 65(2b):443–445

    Article  PubMed  Google Scholar 

  6. Yamazaki M, Okawa A, Akazawa T, Koda M (2007) Usefulness of 3-dimensional full-scale modeling for preoperative simulation of surgery in a patient with old unilateral cervical fracture-dislocation. Spine 32(18):E532–E536

    Article  PubMed  Google Scholar 

  7. Madrazo I, Zamorano C, Magallón E, Valenzuela T, Ibarra A, Salgadoceballos H, Grijalva I, Francobourland RE, Guízarsahagún G (2009) Stereolithography in spine pathology: a 2-case report. Surg Neurol 72(3):272–275

    Article  PubMed  Google Scholar 

  8. Mao K, Wang Y, Xiao S, Liu Z, Zhang Y, Zhang X, Wang Z, Lu N, Shourong Z, Xifeng Z (2010) Clinical application of computer-designed polystyrene models in complex severe spinal deformities: a pilot study. Eur Spine J 19(5):797–802

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yang JC, Ma XY, Lin J, Wu ZH, Zhang K, Yin QS (2011) Personalised modified osteotomy using computer-aided design–rapid prototyping to correct thoracic deformities. Int Orthop 35(12):1827–1832

    Article  PubMed  Google Scholar 

  10. Yang M, Li C, Li Y, Zhao Y, Wei X, Zhang G, Fan J, Ni H, Chen Z, Bai Y (2015) Application of 3D rapid prototyping technology in posterior corrective surgery for Lenke 1 adolescent idiopathic scoliosis patients. Medicine 94(8):e582

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wu ZX, Huang LY, Sang HX, Ma ZS, Wan SY, Cui G, Lei W (2011) Accuracy and safety assessment of pedicle screw placement using the rapid prototyping technique in severe congenital scoliosis. J Spinal Disord Tech 24(7):444

    Article  PubMed  Google Scholar 

  12. Kawaguchi Y, Nakano M, Yasuda T, Seki S, Hori T, Kimura T (2012) Development of a new technique for pedicle screw and Magerl screw insertion using a 3-dimensional image guide. Spine 37(23):1983–1988

    Article  PubMed  Google Scholar 

  13. Lu S, Zhang YZ, Wang Z, Shi JH, Chen YB, Xu XM, Xu YQ (2012) Accuracy and efficacy of thoracic pedicle screws in scoliosis with patient-specific drill template. Med Biol Eng Comput 50(7):751–758

    Article  PubMed  Google Scholar 

  14. Merc M, Drstvensek I, Vogrin M, Brajlih T, Recnik G (2013) A multi-level rapid prototyping drill guide template reduces the perforation risk of pedicle screw placement in the lumbar and sacral spine. Arch Orthop Trauma Surg 133(7):893–899

    Article  PubMed  Google Scholar 

  15. Kaneyama S, Sugawara T, Sumi M, Higashiyama N, Takabatake M, Mizoi K (2014) A novel screw guiding method with a screw guide template system for posterior C-2 fixation: clinical article. J Neurosurg Spine 21(2):231–238

    Article  PubMed  Google Scholar 

  16. Putzier M, Strube P, Cecchinato R, Lamartina C, Hoff E (2014) A new navigational tool for pedicle screw placement in patients with severe scoliosis: a pilot study to prove feasibility, accuracy, and identify operative challenges. J Spinal Disord Tech

  17. Lin CY, Wirtz T, LaMarca F, Hollister SJ (2007) Structural and mechanical evaluations of a topology optimized titanium interbody fusion cage fabricated by selective laser melting process. J Biomed Mater Res, Part A 83(2):272–279. doi:10.1002/jbm.a.31231

    Article  CAS  Google Scholar 

  18. Hunt J (2010) Truss implant. US

  19. Beer ND, Merwe AVD (2013) Patient-specific intervertebral disc implants using rapid manufacturing technology. Rapid Prototyp J 19(2):8

    Google Scholar 

  20. Figueroa O, Rodríguez C, Siller H, Martínez-Romero O, Flores-Villalba E, Díaz-Elizondo J, Ramírez R (2013) Lumbar cage design concepts based on additive manufacturing, vol 102

  21. Domanski J, Skalski K, Grygoruk R, Mróz A (2015) Rapid prototyping in the intervertebral implant design process. Rapid Prototyp J 21(6)

  22. Knutsen AR, Borkowski SL, Ebramzadeh E, Flanagan CL, Hollister SJ, Sangiorgio SN (2015) Static and dynamic fatigue behavior of topology designed and conventional 3D printed bioresorbable PCL cervical interbody fusion devices. J Mech Behav Biomed Mater 49:332–342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Serra T, Capelli C, Toumpaniari R, Orriss IR, Leong JJ, Dalgarno K, Kalaskar DM (2016) Design and fabrication of 3D-printed anatomically shaped lumbar cage for intervertebral disc (IVD) degeneration treatment. Biofabrication 8(3):035001

    Article  PubMed  CAS  Google Scholar 

  24. Spetzger U, Frasca M, König SA (2016) Surgical planning, manufacturing and implantation of an individualized cervical fusion titanium cage using patient-specific data. Eur Spine J 25(7):1–8

    Article  Google Scholar 

  25. Xu N, Wei F, Liu X, Jiang L, Cai H, Li Z, Yu M, Wu F, Liu Z (2016) Reconstruction of the upper cervical spine using a personalized 3D-printed vertebral body in an adolescent with Ewing sarcoma. Spine 41(1):50–54

    Article  Google Scholar 

  26. Leukers B, Gülkan H, Irsen SH, Milz S, Tille C, Schieker M, Seitz H (2005) Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J Mater Sci Mater Med 16(12):1121–1124

    Article  PubMed  CAS  Google Scholar 

  27. Khalyfa A, Vogt S, Weisser J, Grimm G, Rechtenbach A, Meyer W, Schnabelrauch M (2007) Development of a new calcium phosphate powder-binder system for the 3D printing of patient specific implants. J Mater Sci Mater Med 18(5):909–916

    Article  PubMed  CAS  Google Scholar 

  28. Lan PX, Jin WL, Seol YJ, Cho DW (2009) Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification. J Mater Sci Mater Med 20(1):271–279

    Article  PubMed  CAS  Google Scholar 

  29. Whatley BR, Kuo J, Shuai C, Damon BJ, Wen X (2011) Fabrication of a biomimetic elastic intervertebral disk scaffold using additive manufacturing. Biofabrication 3(1):015004

    Article  PubMed  CAS  Google Scholar 

  30. Liu FH (2012) Synthesis of bioceramic scaffolds for bone tissue engineering by rapid prototyping technique. J Sol-Gel Sci Technol 64(3):704–710

    Article  CAS  Google Scholar 

  31. Rosenzweig DH, Carelli E, Steffen T, Jarzem P, Haglund L (2015) 3D-printed ABS and PLA scaffolds for cartilage and nucleus pulposus tissue regeneration. Int J Mol Sci 16(7):15118–15135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Hirabayashi H, Ebara S, Takahashi J, Narasaki K, Takahara K, Murakami G, Kato H (2009) Surgery for thoracic myelopathy caused by ossification of the ligamentum flavum. J Korean Neurosurg Soc 46(3):189–194

    Article  Google Scholar 

  33. Ben HK, Jemel H, Haouet S, Khaldi M (2003) Thoracic myelopathy caused by ossification of the ligamentum flavum: a report of 18 cases. J Neurosurg 99(2 Suppl):157–161

    Google Scholar 

  34. Li C, Yang M, Xie Y, Chen Z, Wang C, Bai Y, Zhu X, Li M (2015) Application of the polystyrene model made by 3-D printing rapid prototyping technology for operation planning in revision lumbar discectomy. J Orthop Sci 20(3):475–480

    Article  PubMed  CAS  Google Scholar 

  35. Okada K, Oka S, Tohge K, Ono K, Yonenobu K, Hosoya T (1991) Thoracic myelopathy caused by ossification of the ligamentum flavum. Clinicopathologic study and surgical treatment. Spine 16(3):280–287

    Article  PubMed  CAS  Google Scholar 

  36. Yonenobu K, Ebara S, Fujiwara K, Yamashita K, Ono K, Yamamoto T, Harada N, Ogino H, Ojima S (1987) Thoracic myelopathy secondary to ossification of the spinal ligament. J Neurosurg 66(4):511–518

    Article  PubMed  CAS  Google Scholar 

  37. Kurosa Y, Yamaura I, Nakai O, Shinomiya K (1996) Selecting a surgical method for thoracic myelopathy caused by ossification of the posterior longitudinal ligament. Spine 21(12):1458–1466

    Article  PubMed  CAS  Google Scholar 

  38. Chang UK, Choe WJ, Chung CK, Kim HJ (2001) Surgical treatment for thoracic spinal stenosis. Spinal Cord 39(7):362–369

    Article  PubMed  CAS  Google Scholar 

  39. Tanaka Y, Sato T, Aizawa T (2006) Surgery for ossification of the ligamentum flavum. Springer, Berlin

    Book  Google Scholar 

  40. Miyashita T, Ataka H, Tanno T (2013) Spontaneous reduction of a floated ossification of the ligamentum flavum after posterior thoracic decompression (floating method); report of a case (abridged translation of a primary publication). Spine J: Off J North Am Spine Soc 13(8):e7–e9. doi:10.1016/j.spinee.2013.02.013

    Article  Google Scholar 

  41. Lawson KJ, Malycky JL, Berry JL, Steffee AD (1991) Lamina repair and replacement to control laminectomy membrane formation in dogs. Spine 16(6 Suppl):222–226

    Article  Google Scholar 

  42. Yücesoy K, Karci A, Kiliçalp A, Mertol T (2000) The barrier effect of laminae: laminotomy versus laminectomy. Spinal Cord 38(7):442–444. doi:10.1038/sj.sc.3101029

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Mr Liao for the computer software support (Guangzhou You Dao Computer Technology Co., Ltd) and all the operating room staff. This work was supported by the Science and Technology Project of Guangdong Province (2014B090901055, 2015B010125005, and 2016B090917001), the south wisdom valley innovation team plan (2015CXTD05), and the National Natural Science Foundation of China (61427807).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhua Huang.

Ethics declarations

Conflict of interest statement

None of the authors has any potential conflict of interest.

Funding

The Science and Technology Project of Guangdong Province (2014B090901055, 2015B010125005, and 2016B090917001). South wisdom valley innovation team plan (2015CXTD05). National Natural Science Foundation of China (61427807).

Additional information

Co-first author: Erxing He

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, Q., He, E., Ouyang, H. et al. Design of mulitlevel OLF approach (“V”-shaped decompressive laminoplasty) based on 3D printing technology. Eur Spine J 27 (Suppl 3), 323–329 (2018). https://doi.org/10.1007/s00586-017-5234-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-017-5234-0

Keywords

Navigation