Skip to main content

Advertisement

Log in

Causal factors for position-related SSEP changes in spinal surgery

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Background context

Somatosensory evoked potentials (SSEPs) are effective in detecting upper extremity positional injuries; however, causal factors for which patient population is most at risk are not well established.

Purpose

To review causal factors for intraoperative SSEP changes due to patient positioning.

Study design

A case series with retrospective chart analysis was performed.

Patient sample

398 patient charts and intraoperative neurophysiological monitoring data from patients who underwent thoracolumbar and lumbosacral spine surgery were reviewed in a consecutive sequence from 2012 to 2013.

Outcome measures

Adverse events (AE) with the upper extremity SSEP recordings were compared to the independent variables, sex, positioning, length of procedure, and body habitus.

Methods

Thoracolumbar and lumbosacral spine surgeries using contemporaneous ulnar and median nerve SSEPs were reviewed. The one-way analysis of variance (ANOVA) test, Chi-square, and independent samples t test were used to determine statistical significance in having an upper extremity SSEP AE to the aforementioned independent variables.

Results

The sample consisted of 209 males (52.5 %) and 189 females (47.5 %) (n = 398). AE to the upper extremity SSEP was seen in 44 patients. Sex was found to be statistically significant for isolated ulnar nerve AE (P ≤ 0.001) with males being most at risk (87.5 %). AE for isolated median nerve SSEP was statistically significant for supine and prone positions (P = 0.043). Length of procedure was statically significant for isolated ulnar nerve SSEP AE (P = 0.039). BMI was statistically significant for generalized upper extremity SSEP AE (P = 0.016), as well as isolated ulnar SSEP AE (P = 0.006), isolated median SSEP AE (P ≤ 0.001) and contemporaneous median and ulnar SSEP AE of the same limb (P ≤ 0.001).

Conclusion

Sex, patient positioning, length of procedure, and BMI are determinants for upper extremity neural compromise during thoracolumbar and lumbosacral spine surgeries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Schwartz DM, Drummond DS, Hahn M et al (2000) Prevention of positional brachial plexopathy during surgical correction of scoliosis. J Spinal Disord 13(2):178–182

    Article  CAS  PubMed  Google Scholar 

  2. Yonenobu K, Hosono N, Iwasaki M et al (1991) Neurologic complications of surgery for cervical compression myelopathy. Spine 16:1277–1282

    Article  CAS  PubMed  Google Scholar 

  3. Balzer JR, Rose RD, Welch WC et al (1998) Simultaneous somatosensory evoked potential and electromyographic recordings during lumbosacral decompression and instrumentation. Neurosurgery 42(6):1318–1324

    Article  CAS  PubMed  Google Scholar 

  4. Brown RH, Nash CL, Berilla JA et al (1984) Cortical evoked potential monitoring. A system for intraoperative monitoring of spinal cord function. Spine 9:256–261

    Article  CAS  PubMed  Google Scholar 

  5. Fisher RS, Raudzens P, Nunemacher M (1995) Efficacy of intraoperative neurophysiological monitoring. J Clin Neurophysiol 12:97–109

    CAS  PubMed  Google Scholar 

  6. Guérit JM (1998) New methods on the subject of peroperative neurophysiological monitoring in vascular and orthopedic surgery. Bull Mem Acad R Med Belg 153:325–331

    PubMed  Google Scholar 

  7. Guérit JM (1998) Neuromonitoring in the operating room: why, when, and how to monitor? Electroencephalogr Clin Neurophysiol 106:1–21

    Article  PubMed  Google Scholar 

  8. Krieger D, Sclabassi RJ (2001) Real-time intraoperative neurophysiological monitoring. Methods 25:272–287

    Article  CAS  PubMed  Google Scholar 

  9. Wiedemayer H, Fauser B, Sandalcioglu IE et al (2002) The impact of neurophysiological intraoperative monitoring on surgical decisions: a critical analysis of 423 cases. J Neurosurg 96:255–262

    Article  PubMed  Google Scholar 

  10. Padberg AM, Wilson-Holden TJ, Lenke LG et al (1998) Somatosensory- and motor-evoked potential monitoring without a wake-up test during idiopathic scoliosis surgery. An accepted standard of care. Spine 23:1392–1400

    Article  CAS  PubMed  Google Scholar 

  11. Krassioukov AV, Sarjeant R, Arkia H et al (2004) Multimodality intraoperative monitoring during complex lumbosacral procedures: indications, techniques, and long-term follow-up review of 61 consecutive cases. J Neurosurg Spine 1:243–253

    Article  PubMed  Google Scholar 

  12. Kundnani VK, Zhu L, Tak H et al (2010) Multimodal intraoperative neuromonitoring in corrective surgery for adolescent idiopathic scoliosis: evaluation of 354 consecutive cases. Indian J Orthop 44:64–72

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nishijima Y, Okada M, Yasuaki Y et al (1992) Intraoperative monitoring for thoracolumbar or lumbar surgery with somatosensory evoked potentials after double stimuli. Spine 17(11):1304–1308

    Article  CAS  PubMed  Google Scholar 

  14. Nuwer MR, Dawson EG, Carlson LG et al (1995) Somatosensory evoked potential spinal cord monitoring reduces neurologic deficits after scoliosis surgery: results of a large multicenter survey. Electroencephalogr Clin Neurophysiol 96:6–11

    Article  CAS  PubMed  Google Scholar 

  15. Nuwer M, Emerson R, Galloway G et al (2012) Evidence-based guideline update: intraoperative spinal monitoring with somatosensory and transcranial electrical motor evoked potentials. J Clin Neurophysiol 29(1):101–108

    Article  PubMed  Google Scholar 

  16. Pastorelli F, Di Silvestre M, Plasmati R et al (2011) The prevention of neural complications in the surgical treatment of scoliosis: the role of the neurophysiological intraoperative monitoring. Eur Spine J 20(Suppl 1):S105–S114

    Article  PubMed  Google Scholar 

  17. Widhalm G, Novak K, de Camargo AB et al (2012) The value of intraoperative motor evoked potential monitoring during surgical intervention for thoracic idiopathic spinal cord herniation. J Neurosurg Spine 16(2):114–126

    Article  PubMed  Google Scholar 

  18. Jellish WS, Martucci J, Blakeman B et al (1994) Somatosensory evoked potential monitoring of the brachial plexus to predict nerve injury during internal mammary artery harvest: intraoperative comparisons of the Rultract and Pittman sternal retractors. J Cardiothorac Vasc Anesth 8:398–403

    Article  CAS  PubMed  Google Scholar 

  19. Mostegl A, Bauer R (1984) The application of somatosensory-evoked potentials in orthopedic spine surgery. Arch Orthop Trauma Surg 103(3):179–184

    Article  CAS  PubMed  Google Scholar 

  20. Räf L, Netz P (1999) How to avoid injuries in connection with surgery? Perioperative nerve injuries are probably underreported. Lakartidningen 96:1951–1958

    PubMed  Google Scholar 

  21. Uribe JS, Kolla J, Omar H et al (2010) Brachial plexus injury following spinal surgery. J Neurosurg Spine 13:552–558

    Article  PubMed  Google Scholar 

  22. Moller A (2006) Intraoperative neurophysiological monitoring, 2nd edn. Humana Press, Totowa

    Google Scholar 

  23. Chung I, Glow JA, Dimopoulos V et al (2009) Upper-limb somatosensory evoked potential monitoring in lumbosacral spine surgery: a prognostic marker for position-related ulnar nerve injury. Spine J 9:287–295

    Article  PubMed  Google Scholar 

  24. Fountas K, Dimopoulos V, Chung I (1995) Intraoperative monitoring. J Neurosurg Spine 2(3):399–400

    Google Scholar 

  25. Jones SC, Fernau R, Woeltjen BL (2004) Use of somatosensory evoked potentials to detect peripheral ischemia and potential injury resulting from positioning of the surgical patient: case reports and discussion. Spine J 4(3):360–362

    Article  PubMed  Google Scholar 

  26. Kamel IR, Drum ET, Koch SA et al (2006) The use of somatosensory evoked potentials to determine the relationship between patient positioning and impending upper extremity nerve injury during spine surgery: a retrospective analysis. Anesth Analg 102:1538–1542

    Article  PubMed  Google Scholar 

  27. American Clinical Neurophysiology Society (2009) Guideline 11B: recommended standards for intraoperative monitoring of somatosensory evoked potentials. Retrieved from ACNS.org

  28. Cooper DE, Jenkins RS, Bready L et al (1988) The prevention of injuries of the brachial plexus secondary to malposition of the patient during surgery. Clin Orthop Relat Res 228:33–41

    PubMed  Google Scholar 

  29. Mitterschiffthaler G, Theiner A, Posch G et al (1987) Lesion of the brachial plexus, caused by wrong positioning during surgery. Anasth Intensivther Notfallmed 22(4):177–180

    Article  CAS  PubMed  Google Scholar 

  30. O’Brien MF, Lenke LG, Bridwell KH et al (1994) Evoked potential monitoring of the upper extremities during thoracic and lumbar spinal deformity surgery: a prospective study. J Spinal Disord 7:277–284

    Article  PubMed  Google Scholar 

  31. Saady A (1981) Brachial plexus palsy after anaesthesia in the sitting position. Anaesthesia 36(2):194–195

    Article  CAS  PubMed  Google Scholar 

  32. Lorenzini NA, Poterack KA (1996) Somatosensory evoked potentials are not a sensitive indicator of potential positioning injury in the prone patient. J Clin Monit 12:171–176

    Article  CAS  PubMed  Google Scholar 

  33. Baumann SB, Welch WC, Bloom MJ (2000) Intraoperative SSEP detection of ulnar nerve compression or ischemia in an obese patient: a unique complication associated with a specialized spinal retraction system. Arch Phys Med Rehabil 81(1):130–132

    Article  CAS  PubMed  Google Scholar 

  34. Labrom RD, Hoskins M, Reilly CW et al (2005) Clinical usefulness of somatosensory evoked potentials for detection of brachial plexopathy secondary to malpositioning in scoliosis surgery. Spine 30:2089–2093

    Article  PubMed  Google Scholar 

  35. Brodal P (2004) The central nervous system, 3rd edn. Oxford University Press, North Carolina

    Google Scholar 

  36. Blumenfeld H (2010) Neuroanatomy through clinical cases, 2nd edn. Sinauer Associates Inc, Sunderland

    Google Scholar 

  37. Davenport J (1986) Shunting during carotid endarterectomy. Arch Neurol 43(12):1222–1223

    Article  CAS  PubMed  Google Scholar 

  38. Fiori L, Parenti G (1995) Electrophysiological monitoring for selective shunting during carotid endarterectomy. J Neurosurg Anesthesiol 7:168–173

    Article  CAS  PubMed  Google Scholar 

  39. Inoue T, Ohwaki K, Tamura A et al (2013) Subclinical ischemia verified by somatosensory evoked potential amplitude reduction during carotid endarterectomy: negative effects on cognitive performance. J Neurosurg 118(5):1023–1029

    Article  PubMed  Google Scholar 

  40. Jacobs LA, Brinkman SD, Morrell RM et al (1983) Long-latency somatosensory evoked potentials during carotid endarterectomy. Am Surgeon 49:338–344

    CAS  PubMed  Google Scholar 

  41. Lam AM, Manninen PH, Ferguson GG et al (1991) Monitoring electrophysiologic function during carotid endarterectomy: a comparison of somatosensory evoked potentials and conventional electroencephalogram. Anesthesiology 75:15–21

    Article  CAS  PubMed  Google Scholar 

  42. Malek BN, Mohrhaus CA, Sheth AK (2011) Use of multi-modality intraoperative monitoring during carotid endarterectomy surgery: a case study. Am J Electroneurodiagn Technol 51(1):42–53

    Google Scholar 

  43. Manninen P, Sarjeant R, Joshi M (2004) Posterior tibial nerve and median nerve somatosensory evoked potential monitoring during carotid endarterectomy. Can J Anaesth 51:937–941

    Article  PubMed  Google Scholar 

  44. Manninen PH, Tan TK, Sarjeant RM (2001) Somatosensory evoked potential monitoring during carotid endarterectomy in patients with a stroke. Anesth Analg 93(1):39–44

    Article  CAS  PubMed  Google Scholar 

  45. Mussack T, Biberthaler P, Geisenberger T et al (2002) Assessment of early brain damage in carotid endarterectomy: evaluation of S-100B serum levels and somatosensory evoked potentials in a pilot study. World J Surg 26:1251–1255

    Article  PubMed  Google Scholar 

  46. Schwartz ML, Panetta TF, Kaplan BJ et al (1996) Somatosensory evoked potential monitoring during carotid surgery. Cardiovasc Surg 4:77–80

    Article  CAS  PubMed  Google Scholar 

  47. Ying T, Wang X, Sun H et al (2015) Clinical usefulness of somatosensory evoked potentials for detection of peripheral nerve and brachial plexus injury secondary to malpositioning in microvascular decompression. J Clin Neurophysiol 32(6):512–515

    Article  PubMed  Google Scholar 

  48. Jellish WS, Sherazee G, Patel J et al (2013) Somatosensory evoked potentials help prevent positioning-related brachial plexus injury during skull base surgery. Otolaryngol Head Neck Surg 149(1):168–173

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin W. Silverstein.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silverstein, J.W., Matthews, E., Mermelstein, L.E. et al. Causal factors for position-related SSEP changes in spinal surgery. Eur Spine J 25, 3208–3213 (2016). https://doi.org/10.1007/s00586-016-4618-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-016-4618-x

Keywords

Navigation