Skip to main content

Advertisement

Log in

Antihyperlipidemic and antiinflammatory effect of Bhallataka nuts in ameliorating the alterations in lipid metabolism and inflammation in diabetes-induced cardiac damage in rats

  • Original Article
  • Published:
Comparative Clinical Pathology Aims and scope Submit manuscript

Abstract

Semecarpus anacardium Linn., which belongs to the Anacardiaceae family, has been used in both Ayurveda and Siddha system against various ailments. The present study was carried out to establish the antihyperlipidemic and antiinflammatory effect of S. anacardium Linn. nut milk extract (SA) in diabetes-induced cardiovascular complications in rats. Type 2 diabetes was induced in rats by feeding them with a high-fat diet for 2 weeks followed by intraperitoneal injection of streptozotocin (STZ) 35 mg/kg body wt twice 24 h apart dissolved in olive oil and left for 12 weeks to develop cardiovascular complication. High-fat diet and STZ induction significantly (p < 0.05) increased the lipid levels in plasma, liver, and heart tissue of rats with diabetes-induced cardiovascular damage. A significant increase in the lipoprotein levels was also observed. The activities of lipid-metabolizing enzymes were also altered. The levels of inflammatory cytokines were increased significantly in diabetic rats. The drug established its cardioprotective effect by decreasing the lipid levels and ameliorating the alterations in the activities of lipid-metabolizing enzymes and also by its antiinflammatory activity when rats with diabetes-induced cardiovascular damage were treated with the drug at a dosage of 300 mg/kg body wt for 8 weeks. The present study establishes the remarkable hypolipidemic and antiinflammatory activity of the drug in preventing and treating the diabetes-induced cardiovascular damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed I, Cummings E, Adeghate E, Sharma AK, Singh J (2004) Beneficial effects and mechanism of action of Momordica charantia fruit juice in the treatment of streptozotocin-induced diabetes mellitus in rats. Mol Cell Biochem 26:63–70

    Article  Google Scholar 

  • Arathi G, Sachdanandam P (2003) Therapeutic effect of Semecarpus anacardium Linn. nut milk extract on carbohydrate metabolizing and mitochondrial TCA cycle and respiratory chain enzymes in mammary carcinoma rats. J Pharm Pharmacol 55:1283–1290

    Article  PubMed  CAS  Google Scholar 

  • Arul B, Kothai R, Christina AJ (2004) Hypoglycemic and antihyperglycemic effect of Semecarpus anacardium Linn in normal and streptozotocin-induced diabetic rats. Methods Find Exp Clin Pharmacol 26:759–762

    Article  PubMed  CAS  Google Scholar 

  • Berthezène F (2002) Diabetic dyslipidaemia. Br J Diabetes Vasc Dis 2(1):S12–S17

    Google Scholar 

  • Coskun O, Kanter M, Korkmaz A, Oter S (2005) Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and β-cell damage in rat pancreas. Pharmacol Res 51:117–123

    Article  PubMed  CAS  Google Scholar 

  • Duncan BB, Schmidt MI, Pankow JS, Bang H, Couper D, Ballantyne CM, Hoogeveen RC, Heiss G (2003) Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes 52:1799–1805

    Article  PubMed  CAS  Google Scholar 

  • Folch J, Less M, Stanely GHS (1951) A simple method for the isolation and purification of total lipids from animal tissues. J BiolChem 226:49–509

    Google Scholar 

  • Formulary of Siddha Medicine (1972) Indian Medicine Practioners Cooperative Pharmacy and Stores Ltd., Chennai, India, 197

  • Haffner SM (2002) Lipoprotein disorders associated with type 2 diabetes mellitus and insulin resistance. Am J Cardiol 90:55i–61i

    Article  PubMed  CAS  Google Scholar 

  • Hansen D, Dendale P, Beelen M, Jonkers RA, Mullens A, Corluy L et al (2010) Plasma adipokine and inflammatory marker concentrations are altered in obese, as opposed to non-obese, type 2 diabetes patients. Eur J Appl Physiol 109:397–404

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Haseena Banu HK, Kaladevi SV, Ashwini S, Shanthi P, Sachdanandam P (2011) Anti diabetic and anti oxidant effect of Semecarpus anacardium Linn nut milk extract in a high fat diet STZ induced Type 2 diabetic rat model. J Diet Suppl 1:1–15

    Google Scholar 

  • Hitz J, Sternmetz J, Siest G (1983) Plasma LCAT-reference values and effects of xenobiotics. Clin Chim Acta 133:85–96

    Article  PubMed  CAS  Google Scholar 

  • Horn WT, Menahan LA (1981) A sensitive method for the determination of free fatty acids in plasma. J Lipid Res 22:377–381

    Google Scholar 

  • Hsueh WA, Lyon CJ, Quinones MJ (2004) Insulin resistance and the endothelium. Am J Med 117:109–117

    Article  PubMed  CAS  Google Scholar 

  • Jaya A, Shanthi P, Sachdanandam P (2010) Hypolipidemic activity of Semecapus anacardium in Streptozotocin induced diabetic rats. Endocrine 38(1):11–17

    Article  PubMed  CAS  Google Scholar 

  • Karthikesan K, Pari L, Menon VP (2010) Antihyperlipidemic effect of chlorogenic acid and tetrahydrocurcumin in rats subjected to diabetogenic agents. Chem Biol Interact 3:643–650

    Article  Google Scholar 

  • Khan HBH, Vinayagam KS, Madan P, Palanivelu S, Panchanadham S (2012) Modulatory effect of Semecarpus anacardium against oxidative damages in DMBA induced mammary carcionogenesis rat model. Com Clin Pathol 21:1275–1284

    Article  Google Scholar 

  • Khan HBH, Vinayagam KS, Renny CM, Palanivelu S, Panchanadham S (2013a) Potential antidiabetic effect of Semecarpus anacardium in a Type 2 diabetic rat model. Inflammopharamacology 21(1):47–53

    Article  Google Scholar 

  • Khan HBH, Vinayagam KS, Kumar S, Palanivelu S, Panchanadham S (2013b) Antihypercholesterolemic effect of Semecarpus anacardium Linn nut milk extract in high cholesterol fed rats. Com Clin Pathol. doi:10.1007/s00580-013-1706-8

    Google Scholar 

  • Kirana H, Srinivasan BP (2010) Effect of Cyclea peltata Lam. roots aqueous extract on glucose levels, lipid profile, insulin, TNF-a and skeletal muscle glycogen in type 2 diabetic rats. Indian J Exp Biol 48:499–502

    PubMed  CAS  Google Scholar 

  • Kothai R, Arul B, Kumar KS, Christina AJ (2005) Hypoglycemic and antiperglycemic effects of Semecarpus anacardium linn in normal and alloxan-induced diabetic rats. J Herb Pharmacother 5(2):49–56

    Google Scholar 

  • Kothari HV, Bonner MJ, Miller BF (1970) Cholesterol ester hydrolase in homogenates and lysosomal fractions of human aorta. Biochem Biophys Acta 202:325–331

    Article  PubMed  CAS  Google Scholar 

  • Laakso M (2001) Cardiovascular disease in type 2 diabetes: challenge for treatment and prevention. J Intern Med 249:225–235

    Article  PubMed  CAS  Google Scholar 

  • Leffler HH, McDougald CH (1963) Estimation of cholesterol in serum by means of improved technics. Tech Bull Regist Med Technol 33:19–23

    PubMed  CAS  Google Scholar 

  • Legraud A, Guillansseav RJ, Land J (1979) Method colorimetric simole determination del’activit., de la lecithin cholesterol acyl transferase (LCAT) Plasmatique. Interest on diabeteologic. In: Siest G, Glateau MM (eds) Biologic prospective. Masson, Paris, pp 368–371

    Google Scholar 

  • Lo H-C, Tu S-T, Lin K-C, Lin S-C (2004) The anti-hyperglycemic activity of the fruiting body of Cordyceps in diabetic rats induced by nicotinamide and streptozotocin. Life Sci 74:2897–2908

    Article  PubMed  CAS  Google Scholar 

  • Mamo JCL, Hirano T, Sainsbury A (1992) Hypertriglyceridemia is exacerbated by slow lipolysis of triayl glycerol-rich lipoproteins in fed but not fasted streptozotocin diabetic rats. Biochim Biophys Acta 1128:132–138

    Article  PubMed  CAS  Google Scholar 

  • Mathews DR, Hosker JP, Rudenkl AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and β-cells function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  Google Scholar 

  • Matsuura F, Wang N, Chen XC, Tall AR (2006) HDL from CETPdeficient subjects shows enhanced ability to promote cholesterol efflux from macrophages in an apo E and ABCG1-dependent pathway. J Clin Invest 116:1435–1442

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Morrish NJ, Wang SL, Stevens LK, Fuller JH, Keen H (2001) Mortality and causes of death in the WHO Multinational Study of Vascular Disease in Diabetes. Diabetologia 44(2):S14–S21

    Article  PubMed  Google Scholar 

  • Murthy SSN (1992) New biflavanoid from Semecarpus anacardium Linn. Clin Acta Turcica 20:33–37

    CAS  Google Scholar 

  • Nielsen LB, Bartels ED, Bollano E (2002) Overexpression of apolipoprotein B in the heart impedes cardiac triglyceride accumulation and development of cardiac dysfunction in diabetic mice. J Biol Chem 277:27014–27020

    Google Scholar 

  • Nilsson-Ehle PA, Garfinkel AS, Shotz MC (1980) Lipolytic enzymes and plasma lipoprotein metabolism. Annu Rev Biochem 49:667–693

    Article  PubMed  CAS  Google Scholar 

  • Parekh AC, Jung DH (1970) Cholesterol determination with ferric chloride-uranyl acetate and sulphuric acid ferrous sulphate reagents. Anal Biochem 42:1423–1427

    CAS  Google Scholar 

  • Pickup JC (2004) Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care 27:813–23. 5(2):49–56

    Google Scholar 

  • Ramchou M, Harnafi H, Alem C, Benlyas M, Elrhaffari L, Amrani S (2009) Study on antioxidant and hypolipidemic effects of polyphenol-rich extracts from Thymus vulgaris and Lavendula multifida. Res Article 3:106–112

    Google Scholar 

  • Ramprasath VR, Shanthi P, Sachdanandam P (2005) Evaluation of antioxidant effect of Semecarpus anacardium Linn. nut extract on the components of immune system in adjuvant arthritis. Vasc Pharmacol 42:179–186

    Article  CAS  Google Scholar 

  • Ramprasath VR, Shanthi P, Sachdanandam P (2006) Immunomodulatory and anti-inflammatory effects of Semecarpus anacardium LINN. Nut milk extract in experimental inflammatory conditions. Biol Pharm Bull 29:693–700

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues B, Cam MC, McNeill JH (1995) Myocardial substrate metabolism: implications for diabetic cardiomyopathy. J Mol Cell Cardiol 27:169–179

    Google Scholar 

  • Rouser G, Fkeischer S, Yamamoto A (1970) Two dimensional then layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 5:494–496

    Article  PubMed  CAS  Google Scholar 

  • Sachdewa A, Khemani LD (2003) Effect of Hibiscus rosa sinensis Linn. ethanol flower extract on blood glucose and lipid profile in streptozotocin induced diabetes in rats. J Ethanolpharmacol 89:61–66

    Article  Google Scholar 

  • Saddik M, Lopaschuk GD (1992) Myocardial triglyceride turnover and contribution to energy substrate utilization in isolated working rat hearts. J Biol Chem 266:8162–8170

    Google Scholar 

  • Schmidt A (1974) Measurement of lipoprotein lipase and hepatic triglyceride lipase in human postheparin plasma. Meth Enzymol 72:325–337

    Google Scholar 

  • Sharma R, Mathur Dixit VP (1995) Hypocholesterolemic activity of nut shell extract of Semecarpus anacardium (Bhilawa) in cholesterol fed rabbits. Indian J Exp Biol 3:444–448

    Google Scholar 

  • Sharma AK, Bharti S, Goyal S, Arora S, Nepal S, Kishore K, Joshi S, Kumari S, Arya DS (2011) Upregulation of PPARc by Aegle marmelos ameliorates insulin resistance and b-cell dysfunction in high fat diet fed streptozotocin induced type 2 diabetic rats. Phytother Res 10:1457–1465

    Article  Google Scholar 

  • Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87(1):4–14

    Article  PubMed  CAS  Google Scholar 

  • Shen WH, Jeng CY, Lee WJ (2001) Simvastatin treatment on postprandial hypertriglyceridemia in type 2 diabetes mellitus patients with combined hyperlipidemia. Metabolism 50:355–359

    Article  Google Scholar 

  • Shirwaikar A, Rajendran K, Barik R (2006) Effect of aqueous bark extract of Garuga pinnata Roxb in streptozotocin-nicotinamide induced type-II diabetes mellitus. J Ethnopharmacol 107:285–290

    Google Scholar 

  • Sugapriya D, Shanthi P, Sachdanandam P (2008) Restoration of energy metabolism in leukemic mice treated by a Siddha drug Semecarpus anacardium Linn. nut milk extract. Chem Biol Interact 9:43–58

    Article  Google Scholar 

  • Susan Marsh A, Louis Dell Italia J, John Chatham C (2009) Interaction of diet and diabetes on cardiovascular function in rats. Am J Physiol Heart Circ Physiol 296:H282–H292

    Article  PubMed  PubMed Central  Google Scholar 

  • Trinder P (1969) Determination of blood glucose using an oxidase-peroxidase system with a noncarcinogenic chromogen. J Clin Pathol 22:158–161

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Van Handel E (1961) Suggested modifications of the micro determination of triglycerides. Clin Chem 7:249–251

    Google Scholar 

  • Vinayagam KS, Khan HBH, Palanivelu S, Panchanadham S (2012) Hypocholesterolemic effect of Semecarpus anacardium Linn nut milk extract in high cholesterol fed hypercholesterolemic rats. Chin J of Integr Med. doi:10.1007/s11655-012-1252-2

    Google Scholar 

  • Wilson DE, Spiger MJ (1973) A dual precipitation method for quantitative plasma lipoprotein measurement without ultracentrifugation. J Lab Clin Med 82:473–482

    PubMed  CAS  Google Scholar 

  • Xie WD, Du LJ (2005) High-cholesterol diets impair short-term retention of memory in alloxan-induced diabetic mice, but not acquisition of memory in prediabetic mice. Life Sci 77:481–495

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Barnes GT, Yang Q et al (2003) Chronic inflammation in fat plays a crucial role in the development of obesity related insulin resistance. J Clin Invest 112:1821–1830

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Young ME, McNutty P, Taegtmeyer H (2002) Adaptation and maladaptation of heart in diabetes: Part II. Potential mechanisms. Circulation 105:1861–1870

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Chen S, Deng X, Yang X, Huang X (2006) Danggui–Buxue–Tang decoction has an anti-inflammatory effect in diabetic atherosclerosis rat model. Diabetes Res Clin Pract 74:194–196

    Article  PubMed  Google Scholar 

  • Zhang L, Yang J, Chen XQ, Zan K, Wen XD, Chen H, Wang Q, Lai MX (2010) Antidiabetic and antioxidant effects of extracts from Potentilla discolor Bunge on diabetic rats induced by high fat diet and streptozotocin. J Ethnopharmacol 132:518–524

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachdanandam Panchanatham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subramaniam, S., Khan, H.B.H., Palanivelu, S. et al. Antihyperlipidemic and antiinflammatory effect of Bhallataka nuts in ameliorating the alterations in lipid metabolism and inflammation in diabetes-induced cardiac damage in rats. Comp Clin Pathol 23, 1593–1601 (2014). https://doi.org/10.1007/s00580-013-1828-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-013-1828-z

Keywords

Navigation