Skip to main content
Log in

Local Null Controllability of a 1D Stefan Problem

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

The purpose of this article is to give a new proof of a null controllability result for a 1D free-boundary problem of the Stefan kind for a heat PDE. We introduce a method based on local inversion that, in contrast with other previous arguments, does not rely on any compactness property and can be generalized to higher dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. A justification for the introduction of this constraint is given in Sect. 4 after the proof of Lemma 4.3.

  2. The Hölder spaces \(\mathcal C^{2+\alpha , 1 + \alpha /2}\) are defined in the Appendix (see Sect. 6).

References

  • Alekseev, V.M., Tikhomirov, V.M., Fomin, S.V.: Optimal Control. Consultants Bureau, New York (1987)

    Book  MATH  Google Scholar 

  • Avalos, G., Lasiecka, I.: Boundary controllability of thermoelastic plates via the free boundary conditions. SIAM J. Control Optim. 38(2), 337–383 (2000). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  • Clark, H.R., Fernández-Cara, E., Limaco, J., Medeiros, L.A.: Theoretical and numerical local null controllability for a parabolic system with local and nonlocal nonlinearities. Appl. Math. Comput. 223, 483–505 (2013)

    MathSciNet  MATH  Google Scholar 

  • Doubova, A., Fernández-Cara, E.: Some control results for sim-plified one-dimensional models of fluid–solid interaction. Math. Models Methods Appl. Sci. 15(5), 783–824 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Doubova, A., Fernández-Cara, E., González-Burgos, M., Zuazua, E.: On the controllability of parabolic systems with a nonlinear term involving the state and the gradient. SIAM J. Control Optim. 41(3), 798–819 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Fabre, C., Puel, J.P., Zuazua, E.: Approximate controllability of the semilinear heat equation. Proc. R. Soc. Edinb. Sect. A 125(1), 31–61 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Fattorini, H.O., Russell, D.L.: Exact controllability theorems for linear parabolic equations in one space dimension. Arch. Ration. Mech. Anal. 43(4), 272–292 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  • Fernández-Cara, E., Límaco, J., Menezes, S.B.: On the controllability of a free-boundary problem for the 1D heat equation. Syst. Control Lett. 87, 29–35 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Fernández-Cara, E., Zuazua, E.: The cost of approximate controllability for heat equations: the linear case. Adv. Differ. Equ. 5(4–6), 465–514 (2000)

    MathSciNet  MATH  Google Scholar 

  • Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs (1964)

    MATH  Google Scholar 

  • Friedman, A.: Variational Principles and Free-boundary Problems. Wiley, New York (1982)

    MATH  Google Scholar 

  • Friedman, A. (ed.): Tutorials in Mathematical Biosciences, III. Cell Cycle, Proliferation, and Cancer. Lecture Notes in Mathematics, vol. 1872, Mathematical Biosciences Subseries. Springer, Berlin (2006)

  • Friedman, A.: PDE problems arising in mathematical biology. Netw. Heterog. Media 7(4), 691–703 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Fursikov, A.V., Imanuvilov, O.Yu.: Controllability of Evolution Equations. Lectures Notes Series, vol. 34. National University, RIM, Seoul (1996)

  • Hansen, S.W., Imanuvilov, O.Yu.: Exact controllability of a multilayer Rao–Nakra plate with free boundary conditions. Math. Control Relat. Fields 1(2), 189–230 (2011)

  • Hermans, A.J.: Water Waves and Ship Hydrodynamics. An Introduction, 2nd edn. Springer, Dordrecht (2011)

    Book  MATH  Google Scholar 

  • Ladyzenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. Translations of Mathematical Monographs. American Mathematical Society, Providence (1968)

    Book  Google Scholar 

  • Lebeau, G., Robbiano, L.: Contrôle exact de l’équation de la chaleur. Commun. Partial Differ. Equ. 20(1–2), 335–356 (1995)

    Article  MATH  Google Scholar 

  • Liu, Y., Takahashi, T., Tucsnak, M.: Single input controllability of a simplified fluid–structure interaction model. ESAIM Control Optim. Calc. Var. 19(1), 20–42 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Mercan, M., Nakoulima, O.: Control of Stackelberg for a two-stroke problem. Dyn. Contin. Discret. Impuls. Syst. Ser. B Appl. Algorithms 22(6), 441–463 (2015)

    MathSciNet  MATH  Google Scholar 

  • Nakoulima, O.: Contrôlabilité à zéro avec contraintes sur le contrôle. C. R. Math. Acad. Sci. Paris 339(6), 405–410 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Puel, J.-P., Yamamoto, M.: On a global estimate in a linear inverse hyperbolic problem. Inverse Probl. 12(6), 995–1002 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Stoker, J.J.: Water Waves. Interscience, New York (1957)

    MATH  Google Scholar 

  • Vázquez, J.L., Zuazua, E.: Large time behavior for a simplified 1D model of fluid–solid interaction. Commun. Partial Differ. Equ. 28(9–10), 1705–1738 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Wrobel, L.C., Brebbia, C.A. (eds.): Computational Modelling of Free and Moving Boundary Problems, vol. 1, Fluid flow. In: Proceedings of the First International Conference, 2–4 July, 1991. Computational Mechanics Publications, Southampton (1991)

Download references

Acknowledgements

E. F-C.  was partially supported by MINECO (Spain), Grant MTM2013-41286-P. We would like to express our thanks to the anonymous referee for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Hernández.

Appendix: Some Technical Results

Appendix: Some Technical Results

1.1 Differentiability of \(M^{\ell }\)

Now we proceed to study the applications which make correspond to any \(\ell \in C^1([0,T])\) the coefficients of the differential operator \(M^{\ell }\), namely, \(\ell \mapsto a^{\ell } \) and \(\ell \mapsto b^{\ell }\). From now on, we will use the notations \(a^{\ell }\) and \(a(\ell )\) indistinctly.

Let us define \( da(\ell ,\tilde{\ell }) (\xi ,t) := \frac{d}{d \epsilon } a^{\ell + \epsilon \tilde{\ell }}(\xi ,t) \Big |_{\epsilon =0}. \) Using the chain rule we can see that \(da(\ell ,\tilde{\ell }) (\xi ,t)\) is equal to

$$\begin{aligned}&H_y\big ( x(\xi ,t) , \ell (t) \big ) \tilde{\ell }'(t) + \nabla H_y \big ( x(\xi ,t) , \ell (t) \big ) \cdot \Big ( H_y\big ( x(\xi ,t) , \ell (t) \big ) , 1 \Big ) \ell '(t) \tilde{\ell }(t) \nonumber \\&\quad +\, \nabla H_{xx} \big (x(\xi ,t) , \ell (t) \big ) \cdot \Big ( H_y\big ( x(\xi ,t) , \ell (t) \big ) , 1 \Big ) \tilde{\ell }(t), \end{aligned}$$
(6.1)

where \(x(\xi ,t)\) denotes \(H^{-1}(\xi ,\ell (t))\). Analogously, we obtain

$$\begin{aligned}&db(\ell ,\tilde{\ell }) (\xi ,t) \nonumber \\&\quad =\, 2 H_{x} \big ( x(\xi ,t) , \ell (t) \big ) \nabla H_{x} \big ( x(\xi ,t) , \ell (t) \big ) \cdot \Big ( H_y\big ( x(\xi ,t) , \ell (t) \big ) , 1 \Big ) \tilde{\ell }(t). \end{aligned}$$
(6.2)

Now we proceed to verify that \(da(\ell , \tilde{\ell })\) (resp. \(da_{\xi }(\ell , \tilde{\ell })\) and \(db(\ell , \tilde{\ell })\)) is in fact the Gâteaux-derivative of a (resp. b) at \(\ell \) along the direction \(\tilde{\ell }\). Here, we deal with \(b^{\ell } = H^2_{x}\big ( H^{-1}(\xi ,\ell (t)) , \ell (t) \big )\). The other cases can be handled in a similar way.

Let us fix \(x=H^{-1}(\xi ,\ell (t))\), \(y= \ell (t)\), \(h_1=H^{-1}(\xi ,\ell (t)+ \epsilon \tilde{\ell }(t)) - H^{-1}(\xi ,\ell (t)) \) and \(h_2= \epsilon \tilde{\ell }(t)\). Using the Taylor’s first order expansion of \(H^2_x\), we obtain:

$$\begin{aligned} \Big | b^{\ell + \epsilon \tilde{\ell }}(\xi ,t) -b^\ell (\xi ,t) - \nabla H^2_x(x,y) \cdot (h_1,h_2) \Big | \le C_1 \Vert (h_1,h_2) \Vert ^2 , \end{aligned}$$

where \(C_1\) can be taken as the supremum of \(\Vert \text {Hess}(H^2_x)\Vert \) on a fixed domain, says \(\overline{Q_{\ell +|\tilde{\ell }|}}\). On the other hand

$$\begin{aligned} \Big | H^{-1}(\xi ,\ell (t)+ \epsilon \tilde{\ell }(t)) - H^{-1}(\xi ,\ell (t)) -\nabla H^{-1}(\xi ,\ell (t)) \cdot (0,\epsilon \tilde{\ell }(t)) \Big | \le C_2 |\epsilon \tilde{\ell }(t)|^2 \end{aligned}$$

where \(C_2:=\sup _{(z,w)\in H^{-1}(\overline{Q_{\ell +|\tilde{\ell }|}})} \Vert \text {Hess}(H^{-1} (z,w))\Vert \). Therefore,

$$\begin{aligned}&\Big | b^{\ell + \epsilon \tilde{\ell }}(\xi ,t) -b^\ell (\xi ,t) - \epsilon db(\ell ,\tilde{\ell }) \Big |\\&\quad \le \Big | b^{\ell + \epsilon \tilde{\ell }}(\xi ,t) -b^\ell (\xi ,t) - \nabla H^2_x(x,y) \cdot (h_1,h_2) \Big |\\&\qquad +\Big | \nabla H^2_x(x,y) \cdot (h_1- \epsilon H_y\big ( x , y \big ) \tilde{\ell }(t) \; , \;0) \Big | \end{aligned}$$

and thus

$$\begin{aligned} \Big | \frac{b^{\ell + \epsilon \tilde{\ell }}(\xi ,t) -b^\ell (\xi ,t)}{\epsilon } - db(\ell ,\tilde{\ell }) \Big |&\le 3 C \epsilon |\tilde{\ell }(t)|^2, \end{aligned}$$

where we can take

$$\begin{aligned} C= C_1 C_2 \sup _{(x,t) \in \overline{Q_{\ell +|\tilde{\ell }|}}} \Vert \nabla H^2_x(x,t) \Vert . \end{aligned}$$

1.2 Hölder Regularity of Parabolic Equations

Given a connected open set \(\Omega \subset \mathbb R^n\), consider the cylinder \(Q_T= \Omega \times (0,T)\) and denote by \(S_T=\{(x,t) : x \in \partial \Omega , \ t \in [0,T]\}\) its lateral surface. Let \(\mathcal C^{\alpha ,\alpha /2}(\overline{Q_T})\) be, for any \(\alpha \in (0,1]\), the space of functions \(u: \overline{Q_T} \mapsto \mathbb R\) such that \(D^r_t D^s_x u\) is:

  1. (i)

    Continuous on \(\overline{\Omega }\) for \(0 \le 2r + s \le \lfloor \alpha \rfloor \).

  2. (ii)

    \(\gamma \)-Hölder continuous in space of index \(\gamma = \alpha - \lfloor \alpha \rfloor \) for \( 2r + s = \lfloor \alpha \rfloor \).

  3. (iii)

    \(\gamma \)-Hölder continuous in time of index \(\gamma = (\alpha - 2r - s)/2\) for \( 0< \alpha - 2r - s < 2\).

Obviously, \(\mathcal C^{\alpha ,\alpha /2}(\overline{Q_T})\) is a Banach space for the norm

$$\begin{aligned} \Vert \cdot \Vert _{ \mathcal C^{\alpha ,\alpha /2}(\overline{Q_T})}&= \sum _{0 \le 2r + s \le \lfloor \alpha \rfloor } \Vert D^r_t D^s_x u \Vert _{\infty } \, + \, \sum _{2r + s = \lfloor \alpha \rfloor } \Vert D^r_t D^s_x u \Vert _{C^{\alpha - \lfloor \alpha \rfloor }_{x}(\overline{Q_T})} \\&\quad \, + \, \sum _{0< \alpha - 2r - s < 2 } \Vert D^r_t D^s_x u \Vert _{C^{(\alpha - 2r - s)/2}_{x}(\overline{Q_T})}, \end{aligned}$$

where \(\Vert \cdot \Vert _{\infty }\) denotes the norm of the uniform convergence and

$$\begin{aligned} \Vert u\Vert _{C_x^{\gamma }(\overline{Q_T} )}= & {} \sup _{(x,t),(y,t) \in \overline{Q_T} } \frac{|u(x,t) - u(y,t)|}{ |x-y|^{\gamma }}, \\ \Vert u\Vert _{C_t^{\gamma }(\overline{Q_T} )}= & {} \sup _{(x,s),(x,t) \in \overline{Q_T} } \frac{|u(x,s) - u(x,t)|}{|s-t|^{\gamma }}. \end{aligned}$$

Consider the differential operator

$$\begin{aligned} \mathcal L u = u_t - \sum _{i,j=1}^n a_{i,j}(x,t ) \ u_{x_i,x_j} + \sum _{i=1}^n a_{i}(x,t ) \ u_{x_i} + a(x,t)u . \end{aligned}$$

We will say that the problem

$$\begin{aligned} {\left\{ \begin{array}{ll} \mathcal L u = f(x,t),\\ u \big |_{t=0} = \phi (x),\\ u \big |_{S_T} = \Phi (x,t). \end{array}\right. } \end{aligned}$$
(6.3)

satisfies the compatibility conditions of order \(m\ge 0\) if

$$\begin{aligned} u^{(k)}(x) \big |_{x \in S} = \frac{\partial ^{k} u}{\partial t^k}\Big |_{t=0} = \frac{\partial ^{k} \Phi }{\partial t^k}\Big |_{t=0} = \Phi ^{(k)}(x) \ \ \text {for} \ \ k=0, \cdots , m. \end{aligned}$$

The next two results are classical and well known (see Theorems III.12.2 and IV.5.2 of Ladyzenskaja et al. 1968):

Theorem 6.1

Suppose \(u \in W_q^{2,1}(Q_T)\) is a generalized solution of \(\mathcal L u = f(x,t)\). If f and the coefficients of the operator \(\mathcal L\) belong to \(\mathcal C^{\alpha ,{\alpha }/{2}} (Q_T)\), then u belongs to \(\mathcal C^{2+\alpha ,1+\alpha /2} (Q_T)\).

See also the comments in Ladyzenskaja et al. (1968, p. 223), below the statement of Theorem III.12.2.

Theorem 6.2

Suppose that \(\alpha >0\), the coefficients of the operator \(\mathcal L\) belong to \(\mathcal C^{\alpha ,\alpha /2}(\overline{Q_T})\) and the boundary S is sufficiently regular (more precisely, of class \(\mathcal C^{\alpha + 2}\)). Then, for any \(f \in \mathcal C^{\alpha ,\alpha /2}(\overline{Q_T})\), \(\phi \in \mathcal C^{\alpha +2}(\overline{\Omega })\) and \(\Phi \in \mathcal C^{\alpha + 2,{\alpha }/{2} + 1}(\overline{S_T})\) satisfying the compatibility conditions of order \(\lceil \alpha /2\rceil \), (6.3) possesses exactly one solution in \(\mathcal C^{\alpha + 2,\alpha /2 + 1}(\overline{Q_T})\).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Cara, E., Hernández, F. & Límaco, J. Local Null Controllability of a 1D Stefan Problem. Bull Braz Math Soc, New Series 50, 745–769 (2019). https://doi.org/10.1007/s00574-018-0093-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-018-0093-9

Keywords

Mathematics Subject Classification

Navigation