Skip to main content
Log in

On the Continuity of the Topological Entropy of Non-autonomous Dynamical Systems

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

Let M be a compact Riemannian manifold. The set \(\text {F}^{r}(M)\) consisting of sequences \((f_{i})_{i\in {\mathbb {Z}}}\) of \(C^{r}\)-diffeomorphisms on M can be endowed with the compact topology or with the strong topology. A notion of topological entropy is given for these sequences. I will prove this entropy is discontinuous at each sequence if we consider the compact topology on \(\text {F}^{r}(M)\). On the other hand, if \( r\ge 1\) and we consider the strong topology on \(\text {F}^{r}(M)\), this entropy is a continuous map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here, \(0_{x}\) is the zero vector in \(T_{x}M\), the tangent space of M at x.

References

  • Arnoux, P., Fisher, A.M.: Anosov families, renormalization and nonstationary subshifts. Erg. Th. Dym. Sys. 25, 661–709 (2005)

    Article  MATH  Google Scholar 

  • Block, L.: Noncontinuity of topological entropy of maps of the Cantor set and of the interval. Procedings of the American mathematical society, 50 (1975)

  • Dai, X., Zhou, Z., Geng, X.: Some relations between Hausdorff-dimensions and entropies. J. Sci. China Ser. A 41(10), 1068–1075 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Hirsch, M.W.: Differential Topology, Graduate Texts in Mathematics, vol. 33. Springer-Verlag, New York-Heidelberg-Berlin (1976)

    Google Scholar 

  • Jin-lian, Zhang, Lan-xin, Chen: Lower bounds of the topological entropy for nonautonomous dynamical systems. Appl. Math. J. Chin. Univ. 24(1), 76–82 (2009)

    Article  MathSciNet  Google Scholar 

  • Kloeden, P., Rasmussen, M.: Nonautonomous dynamical systems. Am. Math. Soc. 176 (2011)

  • Kolyada, S., Snoha, L.: Topologial entropy of nonautonomous dynamical systems. Random Comput. Dyn. 4(2–3), 205–233 (1996)

    MATH  Google Scholar 

  • Muentes, J.: Structural Stability of the Anosov families (2017) (Preprint)

  • Muentes, J.: Another classification of dynamical systems on the circle (2017) (Preprint)

  • Newhouse, S.: Continuity properties of entropy. Ann. Math 129, 215–235 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Saghin, R., Yang, J.: Continuity of topological entropy for perturbation of time-one maps of hyperbolic flows. Israel J. Math. 215 (2016)

  • Shao, H., Shi, Y., Zhu, H.: Estimations of topological entropy for nonautonomous discrete systems. J. Differ. Equ. Appl. 22(3), 474–484 (2016)

    Article  MATH  Google Scholar 

  • Walters, P.: An Introduction to ergodic Theory. Springer, Berlin (1982)

    Book  MATH  Google Scholar 

  • Yano, K.: A remark on the topological entropy of homeomorphisms. Invent. Math 59, 215–220 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu, Y., Zhang, J., He, L.: Topological entropy of a sequence of monotone maps on circles. J. Korean Math. Soc. 43(2), 373–382 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeovanny de Jesus Muentes Acevedo.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muentes Acevedo, J.d.J. On the Continuity of the Topological Entropy of Non-autonomous Dynamical Systems. Bull Braz Math Soc, New Series 49, 89–106 (2018). https://doi.org/10.1007/s00574-017-0049-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-017-0049-5

Keywords

Mathematics Subject Classification

Navigation