Skip to main content
Log in

Phosphorus forms affect the hyphosphere bacterial community involved in soil organic phosphorus turnover

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Interactions between bacteria and arbuscular mycorrhizal (AM) fungi play a significant role in mediating organic phosphorus (P) transformations and turnover in soil. The bacterial community in soil is largely responsible for mobilization of the soil organic P pool, and the released P is taken up by extraradical AM hyphae, which mediate its use for plant growth. However, the functional microbiome involved in organic P mineralization in the hyphosphere remains poorly understood. The aim of this study was to determine how AM hyphae-associated bacterial communities related to P turnover in the hyphosphere of leek (Allium porrum) respond to different forms of soil P. Using a compartmented microcosm, leek was grown with the AM fungus Funneliformis mosseae, and the extraradical mycelium of F. mosseae was allowed to grow into a separate hyphal compartment containing either no added P, or P as KH2PO4 or phytin. High-throughput sequencing showed that the alkaline phosphatase (ALP)-harboring bacterial community associated with the AM hyphae was dominated by Sinorhizobium, Bradyrhizobium, Pseudomonas, and Ralstonia and was significantly changed in response to different P treatments, with Pseudomonas showing higher relative abundance in organic P treatments than in control and inorganic P treatments. Pseudomonas was also the major genus harboring the β-propeller phytase (BPP) gene in the hyphosphere, but the BPP-harboring community structure was not affected by the presence of different P forms. These results demonstrate the profound differences in ALP- and BPP-harboring bacterial communities in the hyphosphere at bacterial genus level, providing new insights to link bacteria and biogeochemical P cycling driven in association with mycorrhizal hyphae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bakker MG, Manter DK, Sheflin AM, Weir TL, Vivanco JM (2012) Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant Soil 360:1–13

    Article  CAS  Google Scholar 

  • Bergkemper F, Kublik S, Lang F, Kruger J, Vestergaard G, Schloter M, Schulz S (2016) Novel oligonucleotide primers reveal a high diversity of microbes which drive phosphorous turnover in soil. J Microbiol Methods 125:91–97

    Article  CAS  PubMed  Google Scholar 

  • Bharadwaj DP, Alström S, Lundquist PO (2012) Interactions among Glomus irregulare, arbuscular mycorrhizal spore-associated bacteria, and plant pathogens under in vitro conditions. Mycorrhiza 22:437–447

    Article  PubMed  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA 108:4516–4522

    Article  PubMed  Google Scholar 

  • Cheng C, Lim BL (2006) Beta-propeller phytases in the aquatic environment. Arch Microbiol 185:1–13

    Article  CAS  PubMed  Google Scholar 

  • Chhabra S, Brazil D, Morrissey J, Burke J, O’Gara F, Dowling DN (2013) Fertilization management affects the alkaline phosphatase bacterial community in barley rhizosphere soil. Biol Fertil Soils 49:31–39

    Article  CAS  Google Scholar 

  • Cordell D, White S (2014) Life’s bottleneck: sustaining the world’s phosphorus for a food secure future. Annu Rev Environ Res 39:161–188

    Article  Google Scholar 

  • Cotta SR, Dias ACF, Seldin L, Andreote FD, Van Elsas JD (2015) The diversity and abundance of phytase genes (β-propeller phytases) in bacterial communities of the maize rhizosphere. Lett Appl Microbiol 62:264–268

    Article  CAS  Google Scholar 

  • Cui H, Zhou Y, Gu Z, Zhu H, Fu S, Yao Q (2015) The combined effects of cover crops and symbiotic microbes on phosphatase gene and organic phosphorus hydrolysis in subtropical orchard soils. Soil Biol Biochem 82:119–126

    Article  CAS  Google Scholar 

  • Dalal RC (1977) Soil organic phosphorus. Adv Agron 29:83–117

    Article  CAS  Google Scholar 

  • Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998

    Article  CAS  PubMed  Google Scholar 

  • Fraser T, Lynch DH, Entz MH, Dunfield KE (2015a) Linking alkaline phosphatase activity with bacterial phoD gene abundance in soil from a long-term management trial. Geoderma 257-258:115–122

    Article  CAS  Google Scholar 

  • Fraser TD, Lynch DH, Bent E, Entz MH, Dunfield KE (2015b) Soil bacterial phoD gene abundance and expression in response to applied phosphorus and long-term management. Soil Biol Biochem 88:137–147

    Article  CAS  Google Scholar 

  • Hanson WC (1950) The photometric determination of phosphorus in fertilizers using the phosphovanado-molybdate complex. J Sci Food Agric 1:172–173

    Article  CAS  Google Scholar 

  • Herman DJ, Firestone MK, Nuccio E, Hodge A (2012) Interactions between an arbuscular mycorrhizal fungus and a soil microbial community mediating litter decomposition. FEMS Microbiol Ecol 80:236–247

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Shi P, Wang Y, Luo H, Shao N, Wang G, Yang P, Yao B (2009) Diversity of beta-propeller phytase genes in the intestinal contents of grass carp provides insight into the release of major phosphorus from phytate in nature. Appl Environ Microbiol 75:1508–1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hugoni M, Luis P, Guyonnet J, Haichar FZ (2018) Plant host habitat and root exudates shape fungal diversity. Mycorrhiza 28:451–463

    Article  PubMed  Google Scholar 

  • Jorquera M, Martínez O, Maruyama F, Marschner P, Mora ML (2008a) Current and future biotechnological applications of bacterial phytases and phytase-producing bacteria. Microbes Environ 23:182–191

    Article  PubMed  Google Scholar 

  • Jorquera MA, Hernández MT, Rengel Z, Marschner P, Mora ML (2008b) Isolation of culturable phosphobacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biol Fert Soils 44:1025–1034

    Article  CAS  Google Scholar 

  • Jorquera MA, Crowley DE, Marschner P, Greiner R, Fernandez MT, Romero D, Menezes-Blackburn D, Mora ML (2011) Identification of β-propeller phytase-encoding genes in culturable Paenibacillus and Bacillus spp. from the rhizosphere of pasture plants on volcanic soils. FEMS Microbiol Ecol 75:163–172

    Article  CAS  PubMed  Google Scholar 

  • Jorquera MA, Shaharoona B, Nadeem SM, Mora ML, Crowley DE (2012) Plant growth-promoting rhizobacteria associated with ancient clones of creosote bush (Larrea tridentata). Microb Ecol 64:1008–1017

    Article  PubMed  Google Scholar 

  • Jorquera MA, Inostroza NG, Lagos LM, Barra PJ, Marileo LG, Rilling JI, Campos DC, Crowley DE, Richardson AE, Mora ML (2014a) Bacterial community structure and detection of putative plant growth-promoting rhizobacteria associated with plants grown in Chilean agro-ecosystems and undisturbed ecosystems. Biol Fertil Soils 50:1141–1153

    Article  Google Scholar 

  • Jorquera MA, Martınez OA, Marileo LG, Acuna JJ, Saggar S, Mora ML (2014b) Effect of nitrogen and phosphorus fertilization on the composition of rhizobacterial communities of two Chilean Andisol pastures. World J Microbiol Biotechnol 30:99–107

    Article  CAS  PubMed  Google Scholar 

  • Kageyama H, Tripathi K, Rai AK, Cha-um S, Waditee-Sirisattha R, Takabe T (2011) An alkaline phosphatase/phosphodiesterase, PhoD, induced by salt stress and secreted out of the cells of Aphanothece halophytica, a halotolerant cyanobacterium. Appl Environ Microb 77:5178–5183

    Article  CAS  Google Scholar 

  • Kamat SS, Williams HJ, Raushel FM (2011) Intermediates in the transformation of phosphonates to phosphate by bacteria. Nature 480:570–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Yadav AN, Verma P, Sangwan P, Saxena A, Kumar K, Singh B (2017) Beta-propeller phytases: diversity, catalytic attributes, current developments and potential biotechnological applications. Int J Biol Macromol 98:595–609

    Article  CAS  PubMed  Google Scholar 

  • Kwak M-J, Kong HG, Choi K, Kwon S-K, Song JY, Lee J, Lee PA, Choi SY, Seo M, Lee HJ, Jung EJ, Park H, Roy N, Kim H, Lee MM, Rubin EM, Lee S-W, Kim JF (2018) Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat Biotechnol 36:1100–1109

    Article  CAS  Google Scholar 

  • Lagos LM, Acuña JJ, Maruyama F, Ogram A, Mora ML, Jorquera MA (2016) Effect of phosphorus addition on total and alkaline phosphomonoesterase-harboring bacterial populations in ryegrass rhizosphere microsites. Biol Fertil Soils 52:1007–1019

    Article  CAS  Google Scholar 

  • Lim BL, Yeung P, Cheng C, Hill JE (2007) Distribution and diversity of phytate-mineralizing bacteria. ISME J 1:321–330

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Benner R, Long RA, Hu J (2009) Subcellular localization of marine bacterial alkaline phosphatases. Proc Natl Acad Sci USA 106:21219–21223

    Article  PubMed  PubMed Central  Google Scholar 

  • Marschner P, Baumann K (2003) Changes in bacterial community structure induced by mycorrhizal colonisation in split-root maize. Plant Soil 251:279–289

    Article  CAS  Google Scholar 

  • Nannipieri P, Giagnoni L, Landi L, Renella G (2011) Role of phosphatase enzymes in soil. Springer, Berlin Heidelberg

    Book  Google Scholar 

  • Nuccio EE, Hodge A, Pett-Ridge J, Herman DJ, Weber PK, Firestone MK (2013) An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition. Environ Microbiol 15:1870–1881

    Article  CAS  PubMed  Google Scholar 

  • Ragot SA, Kertesz MA, Bünemann EK (2015) phoD alkaline phosphatase gene diversity in soil. Appl Environ Microbiol 81:7281–7289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ragot SA, Huguenin-Elie O, Kertesz MA, Frossard E, Bünemann EK (2016) Total and active microbial communities and phoD as affected by phosphate depletion and pH in soil. Plant Soil 408:15–30

    Article  CAS  Google Scholar 

  • Rasmann S, Turlings TCJ (2016) Root signals that mediate mutualistic interactions in the rhizosphere. Curr Opin Plant Biol 32:62–68

    Article  CAS  PubMed  Google Scholar 

  • Sakurai M, Wasaki J, Tomizawa Y, Shinano T, Osaki M (2008) Analysis of bacterial communities on alkaline phosphatase genes in soil supplied with organic matter. Soil Sci Plant Nutr 54:62–71

    Article  CAS  Google Scholar 

  • Sanguin H, Wilson NL, Kertesz MA (2016) Assessment of functional diversity and structure of phytate-hydrolysing bacterial community in Lolium perenne rhizosphere. Plant Soil 401:151–167

    Article  CAS  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi S, Nuccio EE, Shi ZJ, He Z, Zhou J, Firestone MK (2016) The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages. Ecol Lett 19:926–936

    Article  PubMed  Google Scholar 

  • Singh B, Satyanarayana T (2011) Microbial phytases in phosphorus acquisition and plant growth promotion. Physiol Mol Biol Plants 17:93–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soderberg KH, Olsson PA, Baath E (2002) Structure and activity of the bacterial community in the rhizosphere of different plant species and the effect of arbuscular mycorrhizal colonisation. FEMS Microbiol Ecol 40:223–231

    Article  CAS  PubMed  Google Scholar 

  • Stout LM, Nguyen TT, Jaisi DP (2016) Relationship of phytate, phytate-mineralizing bacteria, and beta-propeller phytase genes along a coastal tributary to the Chesapeake Bay. Soil Sci Soc Am J 80:84–96

    Article  CAS  Google Scholar 

  • Taktek S, Trepanier M, Servin PM, St-Arnaud M, Piche Y, Fortin JA, Antoun H (2015) Trapping of phosphate solubilizing bacteria on hyphae of the arbuscular mycorrhizal fungus Rhizophagus irregularis DAOM 197198. Soil Biol Biochem 90:1–9

    Article  CAS  Google Scholar 

  • Tan H, Barret M, Mooij MJ, Rice O, Morrissey JP, Dobson A, Griffiths B, O’Gara F (2013) Long-term phosphorus fertilisation increased the diversity of the total bacterial community and the phoD phosphorus mineraliser group in pasture soils. Biol Fertil Soils 49:661–672

    Article  CAS  Google Scholar 

  • Toljander JF, Artursson V, Paul LR, Jansson JK, Finlay RD (2006) Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. FEMS Microbiol Lett 254:34–40

    Article  CAS  PubMed  Google Scholar 

  • Toljander JF, Lindahl BD, Paul LR, Elfstrand M, Finlay RD (2007) Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol Ecol 61:295–304

    Article  CAS  PubMed  Google Scholar 

  • Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle. INRA Press, Paris, pp 217–221

    Google Scholar 

  • Unno Y, Okubo K, Wasaki J, Shinano T, Osaki M (2005) Plant growth promotion abilities and microscale bacterial dynamics in the rhizosphere of Lupin analysed by phytate utilization ability. Environ Microbiol 7:396–404

    Article  PubMed  Google Scholar 

  • Wang F, Jiang R, Kertesz MA, Zhang F, Feng G (2013) Arbuscular mycorrhizal fungal hyphae mediating acidification can promote phytate mineralization in the hyphosphere of maize (Zea mays L.). Soil Biol Biochem 65:69–74

    Article  CAS  Google Scholar 

  • Wang F, Shi N, Jiang R, Zhang F, Feng G (2016) In situ stable isotope probing of phosphate-solubilizing bacteria in the hyphosphere. J Exp Bot 67:1689–1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu N, Tan G, Wang H, Gai X (2016) Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. Eur J Soil Biol 74:1–8

    Article  CAS  Google Scholar 

  • Yadav BK, Tarafdar JC (2004) Phytase activity in the rhizosphere of crops, trees and grasses under arid environment. J Arid Environ 58:285–293

    Article  Google Scholar 

  • Yuan J, Zhao J, Wen T, Zhao M, Li R, Goossens P, Huang Q, Bai Y, Vivanco JM, Kowalchuk GA, Berendsen RL, Shen Q (2018) Root exudates drive the soil-borne legacy of aboveground pathogen infection. Microbiome 6:156

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Fan J, Ding X, He X, Zhang F, Feng G (2014) Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil. Soil Biol Biochem 74:177–183

    Article  CAS  Google Scholar 

  • Zhang L, Xu M, Liu Y, Zhang F, Hodge A, Feng G (2016) Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. New Phytol 210:1022–1032

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the China Scholarship Council for a scholarship to Fei Wang to pursue her studies in Australia.

Funding

This study was supported by the National Key Research and Development Program of China (2017YFD0200200/2017YFD0200203), the National Natural Science Foundation of China (31501831, U1703232), and the China Postdoctoral Science Foundation funded project (2015M581207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gu Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Table S1

(XLSX 108 kb)

Table S2

(XLSX 53 kb)

Table S3

(XLSX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Kertesz, M.A. & Feng, G. Phosphorus forms affect the hyphosphere bacterial community involved in soil organic phosphorus turnover. Mycorrhiza 29, 351–362 (2019). https://doi.org/10.1007/s00572-019-00896-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-019-00896-0

Keywords

Navigation