Skip to main content
Log in

Surface tension-induced PDMS micro-pillars with controllable tips and tilt angles

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper reports a novel method to fabricate three-dimensional (3D) polydimethylsiloxane (PDMS) micro-pillars using a CO2 laser-machined poly(methyl methacrylate) (PMMA) mold with through-holes. This method eliminates the requirements of expensive and complicated facilities to fabricate a 3D mold. The micro-pillars were formed by the capillary force that draws PDMS into the through-holes of the PMMA mold. The tilt angles of the micro-pillars depend on the tilt angles of the through-holes in the mold, and the concave and convex micro-lens tip shapes of the PDMS micro-pillars can be modified by changing the surface wettability of the PMMA through-holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bertsch A, Lorenz H, Renaud P (1999) 3D microfabrication by combining microstereolithography and thick resist UV lithography. Sens Actuat A 73:14–23

    Article  Google Scholar 

  • Campbell M, Sharp DN, Harrison MT, Denning RG, Turberfield AJ (2000) Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 404:53–56

    Article  Google Scholar 

  • Dauriac V, Descroix S, Chen Y, Peltre G, Sénéchal H (2008) Isoelectric focusing in an ordered micro-pillar array. Electrophoresis 29:2945–2952

    Article  Google Scholar 

  • Erdmann L, Gabriel KJ (2001) High-resolution digital integral photography by use of a scanning micro-lens array. Appl Opt 40:5592–5599

    Article  Google Scholar 

  • Galas JC, Belier B, Aassime A, Palomo J, Bouville D, Aubert J (2004) Fabrication of three-dimensional microsturctures using standard ultraviolet and electron-beam lithography. J Vac Sci Technol B 22:1160–1162

    Article  Google Scholar 

  • Kim J, Nayak S, Lyon LA (2005) Bioresponsive hydrogel micro-lenses. J Am Chem Soc 127:9588–9592

    Article  Google Scholar 

  • King C, Lin L, Wu M (1996) Out-of-plane refractive micro-lens fabricated by surface micromachining. IEEE Photon Technol Lett 8:1349–1351

    Article  Google Scholar 

  • Klank H, Kutter JP, Geschke O (2002) CO2-laser micromachining and back-end processing for rapid production of PMM-based microfluidic systems. Lab Chip 2:242–246

    Article  Google Scholar 

  • Kudryashov V, Yuan XC, Cheong WC, Radhakrishnan K (2003) Grey scale structures formation in SU-8 with e-beam and UV. Micro Electron Eng 67–68:306–311

    Article  Google Scholar 

  • Li HY, Dauriac V, Thibert V, Senechal H, Peltre G, Zhang XX, Descroix S (2010) Micro-pillar array chips toward new immunodiagosis. Lab Chip 10:2597–2604

    Article  Google Scholar 

  • Meisel DC, Wegener M, Busch K (2004) Three-dimensional photonic crystals by holographic lithography using the umbrella configuration: symmetries and complete photonic band gaps. Phys Rev B 70:165104

    Article  Google Scholar 

  • Moon MW, Cha TG, Lee KR, Vaziri A, Kim HY (2010) Tilted Janus polymer pillars. Soft Matter 6:3924–3929

    Article  Google Scholar 

  • Popovic ZD, Sprague RA, Connell GAN (1988) Technique for monolithic fabrication of micro-lens arrays. Appl Opt 27:1281–1284

    Article  Google Scholar 

  • Qu LT, Dai LM, Stone M, Xia ZH, Wang ZL (2008) Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science 322:238–242

    Article  Google Scholar 

  • Rahmawan Y, Moon MW, Kim KS, Lee KR, Suh KY (2010) Wrinkled, dual-scale structures of diamond-like carbon (DLC) for superhydrophobicity. Langmuir 26:484–491

    Article  Google Scholar 

  • Ruther P, Gerlach B, Gottert J, Ilie M, Mohr J, Muller A, Obmann C (1997) Fabrication and characterization of micro-lenses realized by a modified LIGA process. Pure Appl Opt 6:643–653

    Article  Google Scholar 

  • Sameoto D, Menon C (2009) A low-cost, high-yield fabrication method for producing optimized biomimetic dry adhesives. J Micromech Microeng 19:115002

    Article  Google Scholar 

  • Sankur H, Motamedi E, Hall R, Gunning WJ, Khoshnevisan M (1995) Fabrication of refractive micro-lens arrays. Proc SPIE 2383:179–183

    Article  Google Scholar 

  • Sharp DN, Campbell M, Dedman ER, Harrison MT, Denning RG, Turberfield AJ (2002) Photonic crystals for the visible spectrum by holographic lithography. Opt Quantum Electron 34:3

    Article  Google Scholar 

  • Xu YC, Xie FB, Qiu T, Xie L (2012) Rapid fabrication of a microdevice with concave microwells and its application in embryoid body formation. Biomicrofluidics 6:016504

    Article  Google Scholar 

  • Yang S, Ullal CK, Thomas EL, Chen G, Aizenberg J (2005) Micro-lens arrays with integrated pores as a multipattern photomask. Appl Phys Lett 86:201121

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huawei Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Fan, Y., Conchouso, D. et al. Surface tension-induced PDMS micro-pillars with controllable tips and tilt angles. Microsyst Technol 21, 445–449 (2015). https://doi.org/10.1007/s00542-013-2031-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-013-2031-5

Keywords

Navigation