Skip to main content

Advertisement

Log in

Automated systems for perioperative goal-directed hemodynamic therapy

  • Review Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Perioperative goal-directed hemodynamic therapy (GDHT) has evolved from invasive “supra-physiological” maximization of oxygen delivery to minimally or even noninvasively guided automated stroke volume optimization. Over the past four decades, investigators have simultaneously developed novel monitors, updated strategies, and automated technologies to improve GDHT. Decision support technology, which proposes an intervention based on the patient’s real time physiologic status, was an important step towards automation. Closed-loop systems have now been created to both increase GDHT compliance and decrease physician workload. These automated systems offer an elegant approach to optimize cardiac output and end-organ perfusion during the perioperative period. Most notably, automated preload optimization guided by dynamic indicators of fluid responsiveness has shown its feasibility, safety, and impact. Making the leap into fully automated GDHT has been accomplished on a small scale, but there are considerable challenges that must be surpassed before integrating all hemodynamic components into an automated system during general anesthesia. In this review, we will discuss the evolution and potential future of automated GDHT during the perioperative period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pearse RM, Moreno RP, Bauer P, Pelosi P, Metnitz P, Spies C, Vallet B, Vincent JL, Hoeft A, Rhodes A. Mortality after surgery in Europe: a 7 day cohort study. Lancet. 2012;380(9847):1059–65.

    PubMed  PubMed Central  Google Scholar 

  2. Pearse RM, Harrison DA, James P, Watson D, Hinds C, Rhodes A, Grounds RM, Bennett ED. Identification and characterisation of the high-risk surgical population in the United Kingdom. Crit Care. 2006;10(3):R81.

    PubMed  PubMed Central  Google Scholar 

  3. Bennett-Guerrero E, Welsby I, Dunn TJ, Young LR, Wahl TA, Diers TL, Pilips-Bute BG, Newman MF, Mythen MG. The use of a postoperative morbidity survey to evaluate patients with prolonged hospitalization after routine, moderate-risk, elective surgery. Anesth Analg. 1999;89:514–9.

    CAS  PubMed  Google Scholar 

  4. Cecconi M, Corredor C, Arulkumaran N, Abuella G, Ball J, Grounds RM, Hamilton M, Rhodes A. Clinical review: goal-directed therapy-what is the evidence in surgical patients? The effect on different risk groups. Crit Care. 2013;17(2):209.

    PubMed  PubMed Central  Google Scholar 

  5. Shoemaker WC, Appel PL, Kram HB, Waxman K, Lee TS. Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest. 1988;94(6):1176–86.

    CAS  PubMed  Google Scholar 

  6. Mythen MG, Webb AR. Perioperative plasma volume expansion reduces the incidence of gut mucosal hypoperfusion during cardiac surgery. Arch Surg. 1995;130(4):423–9.

    CAS  PubMed  Google Scholar 

  7. Vincent JL, Pelosi P, Pearse R, Payen D, Perel A, Hoeft A, Romagnoli S, Ranieri VM, Ichai C, Forget P, Della Rocca G, Rhodes A. Perioperative cardiovascular monitoring of high-risk patients: a consensus of 12. Crit Care. 2015;19:224.

    PubMed  PubMed Central  Google Scholar 

  8. Teboul JL, Saugel B, Cecconi M, De Backer D, Hofer CK, Monnet X, Perel A, Pinsky MR, Reuter DA, Rhodes A, Squara P, Vincent JL, Scheeren TW. Less invasive hemodynamic monitoring in critically ill patients. Intensive Care Med. 2016;42(9):1350–9.

    PubMed  Google Scholar 

  9. Rinehart J, Liu N, Alexander B, Cannesson M. Review article: closed-loop systems in anesthesia: is there a potential for closed-loop fluid management and hemodynamic optimization? Anesth Analg. 2012;114(1):130–43.

    PubMed  Google Scholar 

  10. Rinehart J, Le Manach Y, Douiri H, Lee C, Lilot M, Le K, Canales C, Cannesson M. First closed-loop goal directed fluid therapy during surgery: a pilot study. Ann Fr Anesth Reanim. 2014;33(3):e35–41.

    CAS  PubMed  Google Scholar 

  11. Rinehart J, Lilot M, Lee C, Joosten A, Huynh T, Canales C, Imagawa D, Demirjian A, Cannesson M. Closed-loop assisted versus manual goal-directed fluid therapy during high-risk abdominal surgery: a case-control study with propensity matching. Crit Care. 2015;19:94.

    PubMed  PubMed Central  Google Scholar 

  12. Joosten A, Huynh T, Suehiro K, Canales C, Cannesson M, Rinehart J. Goal-directed fluid therapy with closed-loop assistance during moderate risk surgery using noninvasive cardiac output monitoring: a pilot study. Br J Anaesth. 2015;114(6):886–92.

    CAS  PubMed  Google Scholar 

  13. Joosten A, Alexander B, Delaporte A, Lilot M, Rinehart J, Cannesson M. Perioperative goal directed therapy using automated closed-loop fluid management: the future? Anaesthesiol Intensive Ther. 2015;47(5):517–23.

    PubMed  Google Scholar 

  14. Joosten A, Delaporte A, Alexander B, Su F, Creteur J, Vincent JL, Cannesson M, Rinehart J. Automated titration of vasopressor infusion using a closed-loop controller: in vivo feasibility study using a swine model. Anesthesiology. 2019;130(3):394–403.

    CAS  PubMed  Google Scholar 

  15. Joosten A, Alexander B, Duranteau J, Taccone FS, Creteur J, Vincent JL, Cannesson M, Rinehart J. Feasibility of closed-loop titration of norepinephrine infusion in patients undergoing moderate- and high-risk surgery. Br J Anaesth. 2019 (Epub ahead of print).

  16. Rinehart J, Ma M, Calderon MD, Bardaji A, Hafiane R, Van der Linden P, Joosten A. Blood pressure variability in surgical and intensive care patients: is there a potential for closed-loop vasopressor administration? Anaesth Crit Care Pain Med. 2019;38(1):69–71.

    PubMed  Google Scholar 

  17. Schultz RJ, Whitfield GF, LaMura JJ, Raciti A, Krishnamurthy S. The role of physiologic monitoring in patients with fractures of the hip. J Trauma. 1985;25(4):309–16.

    CAS  PubMed  Google Scholar 

  18. Evans DC, Doraiswamy VA, Prosciak MP, Silviera M, Seamon MJ, Rodriguez Funes V, Cipolla J, Wang CF, Kavuturu S, Torigian DA, Cook CH, Lindsey DE, Steinberg SM, Stawicki SP. Complications associated with pulmonary artery catheters: a comprehensive clinical review. Scand J Surg. 2009;98(4):199–208.

    CAS  PubMed  Google Scholar 

  19. Michard F, Giglio MT, Brienza N. Perioperative goal-directed therapy with uncalibrated pulse contour methods: impact on fluid management and postoperative outcome. Br J Anaesth. 2017;119(1):22–30.

    CAS  PubMed  Google Scholar 

  20. Coeckelenbergh S, Delaporte A, Ghoundiwal D, Bidgoli J, Fils JF, Schmartz D, Van der Linden P. Pleth variability index versus pulse pressure variation for intraoperative goal-directed fluid therapy in patients undergoing low-to-moderate risk abdominal surgery: a randomized controlled trial. BMC Anesthesiol. 2019;19(1):34.

    PubMed  PubMed Central  Google Scholar 

  21. Sun Y, Chai F, Pan C, Romeiser JL, Gan TJ. Effect of perioperative goal-directed hemodynamic therapy on postoperative recovery following major abdominal surgery—a systematic review and meta-analysis of randomized controlled trials. Crit Care. 2017;21(1):141.

    PubMed  PubMed Central  Google Scholar 

  22. Deng QW, Tan WC, Zhao BC, Wen SH, Shen JT, Xu M. Is goal-directed fluid therapy based on dynamic variables alone sufficient to improve clinical outcomes among patients undergoing surgery? A meta-analysis. Crit Care. 2018;22(1):298.

    PubMed  PubMed Central  Google Scholar 

  23. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368–77.

    CAS  PubMed  Google Scholar 

  24. Peake SL, Delaney A, Bailey M, Bellomo R, Cameron PA, Cooper DJ, Higgins AM, Holdgate A, Howe BD, Webb SA, Williams P. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014;371(16):1496–506.

    CAS  PubMed  Google Scholar 

  25. Mouncey PR, Osborn TM, Power GS, Harrison DA, Sadique MZ, Grieve RD, Jahan R, Harvey SE, Bell D, Bion JF, Coats TJ, Singer M, Young JD, Rowan KM. Trial of early, goal-directed resuscitation for septic shock. N Engl J Med. 2015;372(14):1301–11.

    CAS  PubMed  Google Scholar 

  26. Yealy DM, Kellum JA, Huang DT, Barnato AE, Weissfeld LA, Pike F, Terndrup T, Wang HE, Hou PC, LoVecchio F, Filbin MR, Shapiro NI, Angus DC. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370(18):1683–93.

    CAS  PubMed  Google Scholar 

  27. De Backer D, Vincent JL. Early goal-directed therapy: do we have a definitive answer? Intensive Care Med. 2016;42(6):1048–50.

    PubMed  Google Scholar 

  28. NICE draft guidance on cardiac output monitoring device published for consultation 2011 May 4th, 2011. http://www.nice.org.uk/newsroom/pressreleases/DraftGuidanceOnCardiacOutputMonitoringDevice.jsp.

  29. Vallet B, Blanloeil Y, Cholley B, Orliaguet G, Pierre S, Tavernier B. Guidelines for perioperative haemodynamic optimization. Ann Fr Anesth Reanim. 2013;32(10):e151–8.

    CAS  PubMed  Google Scholar 

  30. European Society of Anaesthesiology—PerioPerative Goal- Directed TheraPy Protocol Summary. 2013. http://html.esahq.org/patientsafetykit/resources/downloads/05_Checklists/Various_Checklists/Perioperative_Goal_Directed_Therapy_Protocols.pdf.

  31. Stens J, Hering JP, van der Hoeven CWP, Boom A, Traast HS, Garmers LE, Loer SA, Boer C. The added value of cardiac index and pulse pressure variation monitoring to mean arterial pressure-guided volume therapy in moderate-risk abdominal surgery (COGUIDE): a pragmatic multicentre randomised controlled trial. Anaesthesia. 2017;72(9):1078–87.

    CAS  PubMed  Google Scholar 

  32. Joosten A, Raj Lawrence S, Colesnicenco A, Coeckelenbergh S, Vincent JL, Van der Linden P, Cannesson M, Rinehart J. Personalized versus protocolized fluid management using noninvasive hemodynamic monitoring (clearsight system) in patients undergoing moderate-risk abdominal surgery. Anesth Analg. 2019;129(1):e8–12.

    PubMed  Google Scholar 

  33. Benes J, Haidingerova L, Pouska J, Stepanik J, Stenglova A, Zatloukal J, Pradl R, Chytra I, Kasal E. Fluid management guided by a continuous non-invasive arterial pressure device is associated with decreased postoperative morbidity after total knee and hip replacement. BMC Anesthesiol. 2015;15:148.

    PubMed  PubMed Central  Google Scholar 

  34. Calvo-Vecino JM, Ripolles-Melchor J, Mythen MG, Casans-Frances R, Balik A, Artacho JP, Martinez-Hurtado E, Serrano Romero A, Fernandez Perez C, Asuero de Lis S. Effect of goal-directed haemodynamic therapy on postoperative complications in low-moderate risk surgical patients: a multicentre randomised controlled trial (FEDORA trial). Br J Anaesth. 2018;120(4):734–44.

    CAS  PubMed  Google Scholar 

  35. Joosten A, Rinehart J, Cannesson M. Perioperative goal directed therapy: evidence and compliance are two sides of the same coin. Rev Esp Anestesiol Reanim. 2015;62(4):181–3.

    CAS  PubMed  Google Scholar 

  36. Miller TE, Roche AM, Gan TJ. Poor adoption of hemodynamic optimization during major surgery: are we practicing substandard care? Anesth Analg. 2011;112(6):1274–6.

    PubMed  Google Scholar 

  37. Spanjersberg WR, Bergs EA, Mushkudiani N, Klimek M, Schipper IB. Protocol compliance and time management in blunt trauma resuscitation. Emerg Med J. 2009;26(1):23–7.

    CAS  PubMed  Google Scholar 

  38. Godier A, Bacus M, Kipnis E, Tavernier B, Guidat A, Rauch A, Drumez E, Susen S, Garrigue-Huet D. Compliance with evidence-based clinical management guidelines in bleeding trauma patients. Br J Anaesth. 2016;117(5):592–600.

    CAS  PubMed  Google Scholar 

  39. Cannesson M, Ramsingh D, Rinehart J, Demirjian A, Vu T, Vakharia S, Imagawa D, Yu Z, Greenfield S, Kain Z. Perioperative goal-directed therapy and postoperative outcomes in patients undergoing high-risk abdominal surgery: a historical-prospective, comparative effectiveness study. Crit Care. 2015;19:261.

    PubMed  PubMed Central  Google Scholar 

  40. Pearse RM, Harrison DA, MacDonald N, Gillies MA, Blunt M, Ackland G, Grocott MP, Ahern A, Griggs K, Scott R, Hinds C, Rowan K. Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review. JAMA. 2014;311(21):2181–90.

    CAS  PubMed  Google Scholar 

  41. Guyenet PG. The sympathetic control of blood pressure. Nat Rev Neurosci. 2006;7(5):335–46.

    CAS  PubMed  Google Scholar 

  42. Nair BG, Gabel E, Hofer I, Schwid HA, Cannesson M. Intraoperative clinical decision support for anesthesia: a narrative review of available systems. Anesth Analg. 2017;124(2):603–17.

    PubMed  Google Scholar 

  43. Simpao AF, Tan JM, Lingappan AM, Galvez JA, Morgan SE, Krall MA. A systematic review of near real-time and point-of-care clinical decision support in anesthesia information management systems. J Clin Monit Comput. 2017;31(5):885–94.

    PubMed  Google Scholar 

  44. Weinger MB, Banerjee A, Burden AR, McIvor WR, Boulet J, Cooper JB, Steadman R, Shotwell MS, Slagle JM, DeMaria S, Torsher L Jr, Sinz E, Levine AI, Rask J, Davis F, Park C, Gaba DM. Simulation-based Assessment of the Management of Critical Events by Board-certified Anesthesiologists. Anesthesiology. 2017;127(3):475–89.

    PubMed  Google Scholar 

  45. Nair BG, Horibe M, Newman SF, Wu WY, Peterson GN, Schwid HA. Anesthesia information management system-based near real-time decision support to manage intraoperative hypotension and hypertension. Anesth Analg. 2014;118(1):206–14.

    CAS  PubMed  Google Scholar 

  46. Joosten A, Hafiane R, Pustetto M, Van Obbergh L, Quackels T, Buggenhout A, Vincent JL, Ickx B, Rinehart J. Practical impact of a decision support for goal-directed fluid therapy on protocol adherence: a clinical implementation study in patients undergoing major abdominal surgery. J Clin Monit Comput. 2019;33(1):15–24.

    PubMed  Google Scholar 

  47. Struys MM, De Smet T, Glen JI, Vereecke HE, Absalom AR, Schnider TW. The history of target-controlled infusion. Anesth Analg. 2016;122(1):56–69.

    CAS  PubMed  Google Scholar 

  48. Liu N, Rinehart J. Closed-loop propofol administration: routine care or a research tool? What impact in the future? Anesth Analg. 2016;122(1):4–6.

    PubMed  Google Scholar 

  49. Joosten A, Rinehart J. Part of the steamroller and not part of the road: better blood pressure management through automation. Anesth Analg. 2017;125(1):20–2.

    PubMed  Google Scholar 

  50. Joosten A, Coeckelenbergh S, Delaporte A, Ickx B, Closset J, Roumeguere T, Barvais L, Van Obbergh L, Cannesson M, Rinehart J, Van der Linden P. Implementation of closed-loop-assisted intra-operative goal-directed fluid therapy during major abdominal surgery: a case-control study with propensity matching. Eur J Anaesthesiol. 2018;35(9):650–8.

    PubMed  Google Scholar 

  51. Marik PE, Monnet X, Teboul JL. Hemodynamic parameters to guide fluid therapy. Ann Intensive Care. 2011;1(1):1.

    PubMed  PubMed Central  Google Scholar 

  52. Michard F. Changes in arterial pressure during mechanical ventilation. Anesthesiology. 2005;103(2):419–28 (quiz 449-415).

    PubMed  Google Scholar 

  53. Michard F, Chemla D, Teboul JL. Applicability of pulse pressure variation: how many shades of grey? Crit Care. 2015;19:144.

    PubMed  PubMed Central  Google Scholar 

  54. Hadian M, Kim HK, Severyn DA, Pinsky MR. Cross-comparison of cardiac output trending accuracy of LiDCO, PiCCO, FloTrac and pulmonary artery catheters. Crit Care. 2010;14(6):R212.

    PubMed  PubMed Central  Google Scholar 

  55. Peyton PJ, Chong SW. Minimally invasive measurement of cardiac output during surgery and critical care: a meta-analysis of accuracy and precision. Anesthesiology. 2010;113(5):1220–35.

    PubMed  Google Scholar 

  56. Joosten A, Desebbe O, Suehiro K, Murphy LS, Essiet M, Alexander B, Fischer MO, Barvais L, Van Obbergh L, Maucort-Boulch D, Cannesson M. Accuracy and precision of non-invasive cardiac output monitoring devices in perioperative medicine: a systematic review and meta-analysisdagger. Br J Anaesth. 2017;118(3):298–310.

    CAS  PubMed  Google Scholar 

  57. Bowman RJ, Westenskow DR. A microcomputer-based fluid infusion system for the resuscitation of burn patients. IEEE Trans Biomed Eng. 1981;28(6):475–9.

    CAS  PubMed  Google Scholar 

  58. Rinehart J, Lee C, Cannesson M, Dumont G. Closed-loop fluid resuscitation: robustness against weight and cardiac contractility variations. Anesth Analg. 2013;117(5):1110–8.

    CAS  PubMed  Google Scholar 

  59. Rinehart J, Alexander B, Le Manach Y, Hofer C, Tavernier B, Kain ZN, Cannesson M. Evaluation of a novel closed-loop fluid-administration system based on dynamic predictors of fluid responsiveness: an in silico simulation study. Crit Care. 2011;15(6):R278.

    PubMed  PubMed Central  Google Scholar 

  60. Rinehart J, Chung E, Canales C, Cannesson M. Intraoperative stroke volume optimization using stroke volume, arterial pressure, and heart rate: closed-loop (learning intravenous resuscitator) versus anesthesiologists. J Cardiothorac Vasc Anesth. 2012;26(5):933–9.

    PubMed  Google Scholar 

  61. Joosten A, Delaporte A, Ickx B, Touihri K, Stany I, Barvais L, Van Obbergh L, Loi P, Rinehart J, Cannesson M, Van der Linden P. Crystalloid versus colloid for intraoperative goal-directed fluid therapy using a closed-loop system: a randomized, double-blinded, controlled trial in major abdominal surgery. Anesthesiology. 2018;128(1):55–66.

    CAS  PubMed  Google Scholar 

  62. Walsh M, Devereaux PJ, Garg AX, Kurz A, Turan A, Rodseth RN, Cywinski J, Thabane L, Sessler DI. Relationship between intraoperative mean arterial pressure and clinical outcomes after noncardiac surgery: toward an empirical definition of hypotension. Anesthesiology. 2013;119(3):507–15.

    PubMed  Google Scholar 

  63. Sun LY, Wijeysundera DN, Tait GA, Beattie WS. Association of intraoperative hypotension with acute kidney injury after elective noncardiac surgery. Anesthesiology. 2015;123(3):515–23.

    PubMed  Google Scholar 

  64. Sessler DI, Meyhoff CS, Zimmerman NM, Mao G, Leslie K, Vasquez SM, Balaji P, Alvarez-Garcia J, Cavalcanti AB, Parlow JL, Rahate PV, Seeberger MD, Gossetti B, Walker SA, Premchand RK, Dahl RM, Duceppe E, Rodseth R, Botto F, Devereaux PJ. Period-dependent associations between hypotension during and for four days after noncardiac surgery and a composite of myocardial infarction and death: a substudy of the POISE-2 trial. Anesthesiology. 2018;128(2):317–27.

    PubMed  Google Scholar 

  65. Maheshwari K, Nathanson BH, Munson SH, Khangulov V, Stevens M, Badani H, Khanna AK, Sessler DI. The relationship between ICU hypotension and in-hospital mortality and morbidity in septic patients. Intensive Care Med. 2018;44(6):857–67.

    PubMed  PubMed Central  Google Scholar 

  66. Futier E, Lefrant JY, Guinot PG, Godet T, Lorne E, Cuvillon P, Bertran S, Leone M, Pastene B, Piriou V, Molliex S, Albanese J, Julia JM, Tavernier B, Imhoff E, Bazin JE, Constantin JM, Pereira B, Jaber S. Effect of individualized vs standard blood pressure management strategies on postoperative organ dysfunction among high-risk patients undergoing major surgery: a randomized clinical trial. JAMA. 2017;318(14):1346–57.

    PubMed  PubMed Central  Google Scholar 

  67. Jinadasa SP, Mueller A, Prasad V, Subramaniam K, Heldt T, Novack V, Subramaniam B. Blood pressure coefficient of variation and its association with cardiac surgical outcomes. Anesth Analg. 2018;127(4):832–9.

    PubMed  Google Scholar 

  68. Ngan Kee WD, Tam YH, Khaw KS, Ng FF, Critchley LA, Karmakar MK. Closed-loop feedback computer-controlled infusion of phenylephrine for maintaining blood pressure during spinal anaesthesia for caesarean section: a preliminary descriptive study. Anaesthesia. 2007;62(12):1251–6.

    CAS  PubMed  Google Scholar 

  69. Ngan Kee WD, Khaw KS, Ng FF, Tam YH. Randomized comparison of closed-loop feedback computer-controlled with manual-controlled infusion of phenylephrine for maintaining arterial pressure during spinal anaesthesia for caesarean delivery. Br J Anaesth. 2013;110(1):59–65.

    CAS  PubMed  Google Scholar 

  70. Rinehart J, Ma M, Calderon MD, Cannesson M. Feasibility of automated titration of vasopressor infusions using a novel closed-loop controller. J Clin Monit Comput. 2018;32(1):5–11.

    PubMed  Google Scholar 

  71. Rinehart J, Joosten A, Ma M, Calderon MD, Cannesson M. Closed-loop vasopressor control: in silico study of robustness against pharmacodynamic variability. J Clin Monit Comput. 2018 (Epub ahead of print).

  72. Michard F, Liu N, Kurz A. The future of intraoperative blood pressure management. J Clin Monit Comput. 2018;32(1):1–4.

    PubMed  Google Scholar 

  73. Hammond JJ, Kirkendall WM, Calfee RV. Hypertensive crisis managed by computer controlled infusion of sodium nitroprusside: a model for the closed loop administration of short acting vasoactive agents. Comput Biomed Res. 1979;12(2):97–108.

    CAS  PubMed  Google Scholar 

  74. Uemura K, Kawada T, Zheng C, Sugimachi M. Less invasive and inotrope-reduction approach to automated closed-loop control of hemodynamics in decompensated heart failure. IEEE Trans Biomed Eng. 2016;63(8):1699–708.

    PubMed  Google Scholar 

  75. Uemura K, Kawada T, Zheng C, Li M, Sugimachi M. Computer-controlled closed-loop drug infusion system for automated hemodynamic resuscitation in endotoxin-induced shock. BMC Anesthesiol. 2017;17(1):145.

    PubMed  PubMed Central  Google Scholar 

  76. Libert N, Chenegros G, Harrois A, Baudry N, Cordurie G, Benosman R, Vicaut E, Duranteau J. Performance of closed-loop resuscitation of haemorrhagic shock with fluid alone or in combination with norepinephrine: an experimental study. Ann Intensive Care. 2018;8(1):89.

    PubMed  PubMed Central  Google Scholar 

  77. Joosten A, Delaporte A, Cannesson M, Rinehart J, Dewilde JP, Van Obbergh L, Barvais L. fully automated anesthesia and fluid management using multiple physiologic closed-loop systems in a patient undergoing high-risk surgery. A A Case Rep. 2016;7(12):260–5.

    PubMed  Google Scholar 

  78. Joosten A, Jame V, Alexander B, Chazot T, Liu N, Cannesson M, Rinehart J, Barvais L. Feasibility of fully automated hypnosis, analgesia, and fluid management using 2 independent closed-loop systems during major vascular surgery: a pilot study. Anesth Analg. 2019;128(6):e88–92.

    CAS  PubMed  Google Scholar 

  79. Hatib F, Jian Z, Buddi S, Lee C, Settels J, Sibert K, Rinehart J, Cannesson M. Machine-learning algorithm to predict hypotension based on high-fidelity arterial pressure waveform analysis. Anesthesiology. 2018;129(4):663–74.

    PubMed  Google Scholar 

  80. Davies SJ, Vistisen ST, Jian Z, Hatib F, Scheeren TWL. Ability of an arterial waveform analysis-derived hypotension prediction index to predict future hypotensive events in surgical patients. Anesth Analg. 2019 (Epub ahead of print).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Joosten.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coeckelenbergh, S., Zaouter, C., Alexander, B. et al. Automated systems for perioperative goal-directed hemodynamic therapy. J Anesth 34, 104–114 (2020). https://doi.org/10.1007/s00540-019-02683-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-019-02683-9

Keywords

Navigation