Skip to main content

Advertisement

Log in

Integrated analysis of circRNAs and mRNAs expression profile revealed the involvement of hsa_circ_0007919 in the pathogenesis of ulcerative colitis

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Ulcerative colitis (UC) is characterized by chronic inflammation in the colon and epigenetic factors underlying the occurrence. Circular RNAs (circRNAs) have been under intensive focus due to the circular construct and gene-regulating functions. However, the changes and roles of circRNAs in UC remain unknown.

Methods

Microarrays were used to detect the differentially expressed genes, and quantitative real-time PCR was used to identify the changes in UC. In silico analyses were performed to predict the functions of circRNAs and mRNAs. In vitro, epithelial cell lines were stimulated by pro-inflammation effectors to test the alterations in circRNAs. CircRNAs–microRNAs–mRNAs network clarified the potential mechanisms underlying circRNAs in UC. The binding site between hsa_circ_0007919 and miR-138 or let-7a was verified using dual-luciferase assay.

Results

A total of 264 significantly dysregulated circRNAs and 1869 differentially expressed mRNAs in inflamed mucosa were compared with the non-inflamed mucosa in UC. Hsa_circ_0004662 and hsa_circ_0007919 were altered largely in UC tissues. Hsa_circ_0007919 was reduced persistently after inflammatory treatments, and it was relevant to Mayo endoscopic subscores and the expression of tight junction molecules. Finally, hsa_circ_0007919 could harbor miR-138, and let-7a to regulate the targeted mRNAs EPC1 and VIPR1.

Conclusions

Several circRNAs were differentially expressed in UC. Hsa_circ_0007919 is related to clinical characteristics and epithelial integrity by binding to hsa-let-7a, hsa-miR-138 to regulate the target genes. CircRNAs, especially hsa_circ_0007919, are associated with the pathogenesis and development of UC, with potential diagnostic and therapeutic implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

UC:

Ulcerative colitis

circRNAs:

Circular RNAs

GO:

Gene ontology

KEGG:

Kyoto Encyclopedia of Genes and Genome

BP:

Biological process

CC:

Cellular component

MF:

Molecular function

CRC:

Colorectal cancer

TNF-α:

Tumor necrosis factor-α

IL1-β:

Interleukin 1β

References

  1. Magro F, Gionchetti P, Eliakim R, et al. Third European evidence-based consensus on diagnosis and management of ulcerative colitis. Part 1: definitions, diagnosis, extra-intestinal manifestations, pregnancy, cancer surveillance, surgery, and ileo-anal pouch disorders. J Crohn's Colitis. 2017;11:649–70.

    Article  Google Scholar 

  2. Ng SC, Shi HY, Hamidi N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet. 2017;390:2769–78.

    Article  PubMed  Google Scholar 

  3. Costello CM, Mah N, Hasler R, et al. Dissection of the inflammatory bowel disease transcriptome using genome-wide cDNA microarrays. PLoS Med. 2005;2:e199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ventham NT, Kennedy NA, Nimmo ER, et al. Beyond gene discovery in inflammatory bowel disease: the emerging role of epigenetics. Gastroenterology. 2013;145:293–308.

    Article  CAS  PubMed  Google Scholar 

  5. Mirza AH, Berthelsen CH, Seemann SE, et al. Transcriptomic landscape of lncRNAs in inflammatory bowel disease. Genome Med. 2015;7:39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. He C, Yu T, Shi Y, et al. MicroRNA 301A promotes intestinal inflammation and colitis-associated cancer development by inhibiting BTG1. Gastroenterology. 2017;152:1434–48.e15.

    Article  CAS  PubMed  Google Scholar 

  7. Min M, Peng L, Yang Y, et al. MicroRNA-155 is involved in the pathogenesis of ulcerative colitis by targeting FOXO3a. Inflamm Bowel Dis. 2014;20:652–9.

    Article  PubMed  Google Scholar 

  8. Hsu MTC-PM. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature. 1979;280:339–40.

    Article  CAS  PubMed  Google Scholar 

  9. Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19:141–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Salzman JCR, Olsen MN, Wang PL, et al. Cell-type specifc features of circular RNA expression. PLoS Genet. 2013;9(9):e1003777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Militello G, Weirick T, John D, et al. Screening and validation of lncRNAs and circRNAs as miRNA sponges. Br Bioinform. 2017;18:780–8.

    CAS  Google Scholar 

  12. Piwecka M, Glazar P, Hernandez-Miranda LR, et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science. 2017;357(6357):eaam8526. https://doi.org/10.1126/science.aam8526.

    Article  CAS  PubMed  Google Scholar 

  13. Li Z, Huang C, Bao C, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 2015;22:256–64.

    Article  CAS  PubMed  Google Scholar 

  14. Ashwal-Fluss R, Meyer M, Pamudurti NR, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014;56:55–66.

    Article  CAS  PubMed  Google Scholar 

  15. Han D, Li J, Wang H, et al. Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology. 2017;66:1151–64.

    Article  CAS  PubMed  Google Scholar 

  16. Liu Q, Zhang X, Hu X, et al. Circular RNA related to the chondrocyte ECM regulates MMP13 expression by functioning as a MiR-136 'Sponge' in human cartilage degradation. Sci Rep. 2016;6:22572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Iparraguirre L, Munoz-Culla M, Prada-Luengo I, et al. Circular RNA profiling reveals that circular RNAs from ANXA2 can be used as new biomarkers for multiple sclerosis. Hum Mol Genet. 2017;26:3564–72.

    Article  CAS  PubMed  Google Scholar 

  18. Yuan G, Chen T, Zhang H, et al. Comprehensive analysis of differential circular RNA expression in a mouse model of colitis-induced colon carcinoma. Mol Carcinog. 2018;57:1825–34.

    Article  CAS  PubMed  Google Scholar 

  19. Zeng K, Chen X, Xu M, et al. CircHIPK3 promotes colorectal cancer growth and metastasis by sponging miR-7. Cell Death Dis. 2018;9(4):417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang H, Chao K, Ng SC, et al. Pro-inflammatory miR-223 mediates the cross-talk between the IL23 pathway and the intestinal barrier in inflammatory bowel disease. Genome Biol. 2016;17:58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Qiao Y, Cai C, Shen J, et al. Circular RNA expression alterations in colon tissues of Crohn's disease patients. Mol Med Rep. 2019;19:4500–6.

    CAS  PubMed  Google Scholar 

  22. Paramsothy S, Kamm MA, Kaakoush NO, et al. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet. 2017;389:1218–28.

    Article  PubMed  Google Scholar 

  23. Matsuhisa K, Watari A, Iwamoto K, et al. Lignosulfonic acid attenuates NF-kappaB activation and intestinal epithelial barrier dysfunction induced by TNF-alpha/IFN-gamma in Caco-2 cells. J Nat Med. 2018;72:448–55.

    Article  CAS  PubMed  Google Scholar 

  24. Stauffer JS, Manzano LA, Balch GC, et al. Development and characterization of normal colonic epithelial cell lines derived from normal mucosa of patients with colon cancer. Am J Surg. 1995;169:190–6.

    Article  CAS  PubMed  Google Scholar 

  25. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2008;4:44.

    Article  CAS  Google Scholar 

  26. Ravasz E, Somera AL, Mongru DA, et al. Hierarchical organization of modularity in metabolic networks. Science. 2002;297:1551.

    Article  CAS  PubMed  Google Scholar 

  27. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  28. Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet. 2012;13:271.

    Article  CAS  PubMed  Google Scholar 

  29. Enright AJ, John B, Gaul U, et al. MicroRNA targets in Drosophila. Genome Biol. 2004;5:R1.

    Article  Google Scholar 

  30. Barrett SP, Wang PL, Salzman J. Circular RNA biogenesis can proceed through an exon-containing lariat precursor. eLife. 2015;4:e07540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu F, Huang Y, Dong F, et al. Ulcerative colitis-associated long noncoding RNA, BC012900, regulates intestinal epithelial cell apoptosis. Inflamm Bowel Dis. 2016;22:782–95.

    Article  PubMed  Google Scholar 

  32. Sitkovsky M, Lukashev D. Regulation of immune cells by local-tissue oxygen tension: HIF1 alpha and adenosine receptors. Nat Rev Immunol. 2005;5:712–21.

    Article  CAS  PubMed  Google Scholar 

  33. Ishihara S, Nishikimi A, Umemoto E, et al. Dual functions of Rap1 are crucial for T-cell homeostasis and prevention of spontaneous colitis. Nat Commun. 2015;6:8982.

    Article  CAS  PubMed  Google Scholar 

  34. Mateescu RB, Bastian AE, Nichita L, Marinescu M, et al. Vascular endothelial growth factor—key mediator of angiogenesis and promising therapeutical target in ulcerative colitis. Rom J Morphol Embryol. 2017;58:1339–455.

    PubMed  Google Scholar 

  35. Dieckgraefe BK, Crimmins DL, Landt V, et al. Expression of the regenerating gene family in inflammatory Bowel disease mucosa: reg Iα upregulation, processing, and antiapoptotic activity. J Investig Med. 2002;50:421–34.

    Article  CAS  PubMed  Google Scholar 

  36. LalNag M, Morin PJ. The claudins. Genome Biol. 2009;10:235.

    Article  CAS  Google Scholar 

  37. Amasheh S, Meiri N, Gitter AH, et al. Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J Cell Sci. 2002;115:4969.

    Article  CAS  PubMed  Google Scholar 

  38. Amoozadeh Y, Dan Q, Xiao J, et al. Tumor necrosis factor-alpha induces a biphasic change in claudin-2 expression in tubular epithelial cells: role in barrier functions. Am J Physiol Cell Physiol. 2015;309:C38–C50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Poritz LS, Garver KI, Green C, et al. Loss of the tight junction protein ZO-1 in dextran sulfate sodium induced colitis. J Surg Res. 2007;140:12–9.

    Article  CAS  PubMed  Google Scholar 

  40. Clark PM, Dawany N, Dampier W, et al. Bioinformatics analysis reveals transcriptome and microRNA signatures and drug repositioning targets for IBD and other autoimmune diseases. Inflamm Bowel Dis. 2012;18:2315–33.

    Article  PubMed  Google Scholar 

  41. Shouval DS, Biswas A, Kang YH, et al. Interleukin 1β mediates intestinal inflammation in mice and patients with interleukin 10 receptor deficiency. Gastroenterology. 2016;151:1100–4.

    Article  CAS  PubMed  Google Scholar 

  42. Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495:333–8.

    Article  CAS  PubMed  Google Scholar 

  43. Zheng Q, Bao C, Guo W, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun. 2016;7:11215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Valmiki S, Ahuja V, Paul J. MicroRNA exhibit altered expression in the inflamed colonic mucosa of ulcerative colitis patients. World J Gastroenterol. 2017;23:5324–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jönsson M, Norrgård Ö, Forsgren S. Epithelial expression of vasoactive intestinal peptide in ulcerative colitis: down-regulation in markedly inflamed colon. Dig Dis Sci. 2012;57:303–10.

    Article  CAS  PubMed  Google Scholar 

  46. Csaba Z, Dournaud P. Cellular biology of somatostatin receptors. Neuropeptides. 2001;35:1–23.

    Article  CAS  PubMed  Google Scholar 

  47. Geng H, Bu HF, Liu F, et al. In inflamed intestinal tissues and epithelial cells, interleukin 22 signaling increases expression of H19 long noncoding RNA which promotes mucosal regeneration. Gastroenterology. 2018;155:144–55.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Peking University People’s Hospital Research and Development Funds Project (Grant No. RDX2018-05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yujun Zhang or Yulan Liu.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Consent for publication

All authors have read, edited, and approved the manuscript for publication.

Ethical considerations

This study was approved by the Human Ethics Committee of the Peking University People’s Hospital and conducted in accordance with the principles of the Declaration of Helsinki. Written informed consent was acquired from all the participants in the study prior to the collection of samples. All the work that involved RNA and DNA in this study was conducted under institutional biosafety committee (IBC)-approved protocols approved at the Peking University People’s Hospital.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 5986 kb)

Supplementary file2 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Chen, N., Ren, W. et al. Integrated analysis of circRNAs and mRNAs expression profile revealed the involvement of hsa_circ_0007919 in the pathogenesis of ulcerative colitis. J Gastroenterol 54, 804–818 (2019). https://doi.org/10.1007/s00535-019-01585-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-019-01585-7

Keywords

Navigation