Skip to main content
Log in

Characterization of polyethylene glycol-grafted polyethylenimine and superparamagnetic iron oxide nanoparticles (PEG-g-PEI-SPION) as an MRI-visible vector for siRNA delivery in gastric cancer in vitro and in vivo

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Gene therapy is a promising therapeutic method but is severely hampered due to its lack of an ideal delivery system. Therefore, in this study, a nonviral and magnetic resonance imaging (MRI) visible vector, polyethylene glycol-grafted polyethylenimine and superparamagnetic iron oxide nanoparticles (PEG-g-PEI-SPION) was used as a nanocarrier for small interfering RNA (siRNA) delivery in gastric cancer.

Methods

Biophysical characterization of PEG-g-PEI-SPION was systematically analyzed, including size, zeta potential, siRNA condensation capacity, cell viability, transfection efficiency, cellular uptake, and MRI-visible function in vivo. Besides, CD44 variant isoform 6 (CD44v6), a protein marker for metastatic behavior in gastric cancer, and was chose as the target gene to further analyze the siRNA delivery function of PEG-g-PEI-SPION.

Results

Under comprehensive analysis, the appropriate N/P ratio of PEG-g-PEI-SPION/siRNA was 10,. and siRNA targeting at human CD44v6 (siCD44v6) transferred by PEG-g-PEI-SPION was effective at downregulating the CD44v6 expression of gastric carcinoma cell line SGC-7901 in vitro. Moreover, knockdown of CD44v6 impaired migrating and invasive abilities of SGC-7901 cells. Furthermore, PEG-g-PEI-SPION was a highly efficient contrast agent for MRI scan in vivo.

Conclusion

PEG-g-PEI-SPION was a promising nonviral vector with molecular image tracing capacity for cancer gene therapy. And CD44v6 was a potential target gene for the prevention and detection of metastatic behavior in gastric cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kim SH, Jeong JH, Lee SH, Kim SW, Park TG. PEG conjugated VEGF siRNA for anti-angiogenic gene therapy. J Control Release. 2006;116:123–9.

    Article  PubMed  CAS  Google Scholar 

  2. Fischer D, Bieber T, Li Y, Elsässer HP, Kissel T. A novel nonviral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm Res. 1999;16:1273–9.

    Article  PubMed  CAS  Google Scholar 

  3. Ogris M, Brunner S, Schüller S, Kircheis R, Wagner E. PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther. 1999;6:595–605.

    Article  PubMed  CAS  Google Scholar 

  4. Fischer D, von Harpe A, Kunath K, Petersen H, Li Y, Kissel T. Copolymers of ethylene imine and N-(2-hydroxyethyl)-ethylene imine as tools to study effects of polymer structure on physicochemical and biological properties of DNA complexes. Bioconjug Chem. 2002;13:1124–33.

    Article  PubMed  CAS  Google Scholar 

  5. Fischer D, Osburg B, Petersen H, Kissel T, Bickel U. Effect of poly(ethylene imine) molecular weight and pegylation on organ distribution and pharmacokinetics of polyplexes with oligodeoxynucleotides in mice. Drug Metab Dispos. 2004;32:983–92.

    PubMed  CAS  Google Scholar 

  6. Merkel OM, Librizzi D, Pfestroff A, Schurrat T, Buyens K, Sanders NN, De Smedt SC, Béhé M, Kissel T. Stability of siRNA polyplexes from poly(ethylenimine) and poly(ethylenimine)-g-poly(ethylene glycol) under in vivo conditions: effects on pharmacokinetics and biodistribution measured by Fluorescence Fluctuation Spectroscopy and Single Photon Emission Computed Tomography (SPECT) imaging. J Control Release. 2009;138:148–59.

    Article  PubMed  CAS  Google Scholar 

  7. Wu Y, Wang W, Chen Y, Huang K, Shuai X, Chen Q, Li X, Lian G. The investigation of polymer-siRNA nanoparticle for gene therapy of gastric cancer in vitro. Int J Nanomed. 2010;5:129–36.

    Article  CAS  Google Scholar 

  8. Chen G, Chen W, Wu Z, Yuan R, Li H, Gao J, Shuai X. MRI-visible polymeric vector bearing CD3 single chain antibody for gene delivery to T cells for immunosuppression. Biomaterials. 2009;30:1962–70.

    Article  PubMed  CAS  Google Scholar 

  9. Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS, Chin SF, Sherry AD, Boothman DA, Gao J. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett. 2006;6:2427–30.

    Article  PubMed  CAS  Google Scholar 

  10. Khemtong C, Kessinger CW, Ren J, Bey EA, Yang SG, Guthi JS, Boothman DA, Sherry AD, Gao J. In vivo off-resonance saturation magnetic resonance imaging of alphavbeta3-targeted superparamagnetic nanoparticles. Cancer Res. 2009;69:1651–8.

    Article  PubMed  CAS  Google Scholar 

  11. Mitelman F. Catalogue of chromosome aberrations in cancer. Cytogenet Cell Genet. 1983;36:1–515.

    Article  PubMed  CAS  Google Scholar 

  12. Desai AM, Pareek M, Nightingale PG, Fielding JW. Improving outcomes in gastric cancer over 20 years. Gastric Cancer. 2004; 7: 196–201; discussion 201–3.

    Google Scholar 

  13. Boyle P. Global burden of cancer. Lancet. 1997;349:23–6.

    Article  Google Scholar 

  14. Neugut AI, Hayek M, Howe G. Epidemiology of gastric cancer. Semin Oncol. 1996;23:281–91.

    PubMed  CAS  Google Scholar 

  15. Kyrlagkitsis I, Karamanolis DG. Genes and gastric cancer. Hepatogastroenterology. 2004;51:320–7.

    PubMed  Google Scholar 

  16. Goodison S, Urquidi V, Tarin D. CD44 cell adhesion molecules. Mol Pathol. 1999;52:189–96.

    Article  PubMed  CAS  Google Scholar 

  17. Rudzki Z, Jothy S. CD44 and the adhesion of neoplastic cells. Mol Pathol. 1997;50:57–71.

    Article  PubMed  CAS  Google Scholar 

  18. Endo K, Terada T. Protein expression of CD44 (standard and variant isoforms) in hepatocellular carcinoma: relationships with tumor grade, clinicopathologic parameters, p53 expression, and patient survival. J Hepatol. 2000;32:78–84.

    Article  PubMed  CAS  Google Scholar 

  19. Ponta H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signaling regulators. Nat Rev Mol Cell Biol. 2003;4:33–45.

    Article  PubMed  CAS  Google Scholar 

  20. Günthert U, Hofmann M, Rudy W, Reber S, Zöller M, Haussmann I, Matzku S, Wenzel A, Ponta H, Herrlich P. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell. 1991;65:13–24.

    Article  PubMed  Google Scholar 

  21. Heider KH, Kuthan H, Stehle G, Munzert G. CD44v6: a target for antibody-based cancer therapy. Cancer Immunol Immunother. 2004;53:567–79.

    Article  PubMed  CAS  Google Scholar 

  22. Chen Y, Huang K, Li X, Lin X, Zhu Z, Wu Y. Generation of a stable anti-human CD44v6 scFv and analysis of its cancer-targeting ability in vitro. Cancer Immunol Immunother. 2010;59:933–42.

    Article  PubMed  CAS  Google Scholar 

  23. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–8.

    Article  PubMed  CAS  Google Scholar 

  24. Fuchs F, Boutros M. Cellular phenotyping by RNAi. Brief Funct Genomic Proteomic. 2006;5:52–6.

    Article  PubMed  CAS  Google Scholar 

  25. Cullen LM, Arndt GM. Genome-wide screening for gene function using RNAi in mammalian cells. Immunol Cell Biol. 2005;83:217–23.

    Article  PubMed  CAS  Google Scholar 

  26. Takeshita F, Ochiya T. Therapeutic potential of RNA interference against cancer. Cancer Sci. 2006;97:689–96.

    Article  PubMed  CAS  Google Scholar 

  27. Bitko V, Musiyenko A, Shulyayeva O, Barik S. Inhibition of respiratory viruses by nasally administered siRNA. Nat Med. 2005;11:50–5.

    Article  PubMed  CAS  Google Scholar 

  28. Lungwitz U, Breunig M, Blunk T, Göpferich A. Polyethylenimine-based non-viral gene delivery systems. Eur J Pharm Biopharm. 2005;60:247–66.

    Article  PubMed  CAS  Google Scholar 

  29. Ogris M, Walker G, Blessing T, Kircheis R, Wolschek M, Wagner E. Tumor-targeted gene therapy: strategies for the preparation of ligand-polyethylene glycol-polyethylenimine/DNA complexes. J Control Release. 2003;91:173–81.

    Article  PubMed  CAS  Google Scholar 

  30. Sutton D, Kim S, Shuai X, Leskov K, Marques JT, Williams BR, Boothman DA, Gao J. Efficient suppression of secretory clusterin levels by polymer-siRNA nanocomplexes enhances ionizing radiation lethality in human MCF-7 breast cancer cell in vitro. Int J Nanomedicine. 2006;1:155–62.

    Article  PubMed  CAS  Google Scholar 

  31. Ogris M, Steinlein P, Kursa M, Mechtler K, Kircheis R, Wagner E. The size of DNA/transferrin-PEI complexes is an important factor for gene expression in cultured cells. Gene Ther. 1998;5:1425–33.

    Article  PubMed  CAS  Google Scholar 

  32. Liotta LA, Kohn EC. The microenvironment of the tumor-host interface. Nature. 2001;411:375–9.

    Article  PubMed  CAS  Google Scholar 

  33. Yeatman TJ, Nicolson GL. Molecular basis of tumor progression: mechanisms of organ-specific tumor metastasis. Semin Surg Oncol. 1993;9:256–63.

    PubMed  CAS  Google Scholar 

  34. Yakushijin Y, Steckel J, Kharbanda S, Hasserjian R, Neuberg D, Jiang W, Anderson I, Shipp MA. A directly spliced exon 10-containing CD44 variant promotes the metastasis and homotypic aggregation of aggressive non-Hodgkin’s lymphoma. Blood. 1998;91:4282–91.

    PubMed  CAS  Google Scholar 

  35. Hong RL, Lee WJ, Shun CT, Chu JS, Chen YC. Expression of CD44 and its clinical implication in diffuse-type and intestinal-type gastric adenocarcinomas. Oncology. 1995;52:334–9.

    Article  PubMed  CAS  Google Scholar 

  36. Heider KH, Dämmrich J, Skroch-Angel P, Müller-Hermelink HK, Vollmers HP, Herrlich P, Ponta H. Differential expression of CD44 splice variants in intestinal- and diffuse-type human gastric carcinomas and normal gastric mucosa. Cancer Res. 1993;53:4197–203.

    PubMed  CAS  Google Scholar 

  37. Müller W, Schneiders A, Heider KH, Meier S, Hommel G, Gabbert HE. Expression and prognostic value of the CD44 splicing variants v5 and v6 in gastric cancer. J Pathol. 1997;183:222–7.

    Article  PubMed  Google Scholar 

  38. Chen Y, Wang W, Lian G, Qian C, Wang L, Zeng L, Liao C, Liang B, Huang B, Huang K, Shuai X. Developmet of an MRI-visible nonviral vector for siRNA delivery targeting gastric cancer. Int J Nanomed. 2012;7:359–68.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 81072045 and 30670951), the Natural Science Foundation of Guangdong Province, China (Grant No. 6021322) and the Industry-University-Research Foundation of Guangdong Province, China (Grant No.2009B090300277).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kaihong Huang or Xintao Shuai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Lian, G., Liao, C. et al. Characterization of polyethylene glycol-grafted polyethylenimine and superparamagnetic iron oxide nanoparticles (PEG-g-PEI-SPION) as an MRI-visible vector for siRNA delivery in gastric cancer in vitro and in vivo. J Gastroenterol 48, 809–821 (2013). https://doi.org/10.1007/s00535-012-0713-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-012-0713-x

Keywords

Navigation