Skip to main content

Advertisement

Log in

Monogenetic volcanism: personal views and discussion

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Monogenetic volcanism produces small-volume volcanoes with a wide range of eruptive styles, lithological features and geomorphic architectures. They are classified as spatter cones, scoria (or cinder) cones, tuff rings, maars (maar–diatremes) and tuff cones based on the magma/water ratio, dominant eruption styles and their typical surface morphotypes. The common interplay between internal, such as the physical–chemical characteristics of magma, and external parameters, such as groundwater flow, substrate characteristics or topography, plays an important role in creating small-volume volcanoes with diverse architectures, which can give the impression of complexity and of similarities to large-volume polygenetic volcanoes. In spite of this volcanic facies complexity, we defend the term “monogenetic volcano” and highlight the term’s value, especially to express volcano morphotypes. This study defines a monogenetic volcano, a volcanic edifice with a small cumulative volume (typically ≤1 km3) that has been built up by one continuous, or many discontinuous, small eruptions fed from one or multiple magma batches. This definition provides a reasonable explanation of the recently recognized chemical diversities of this type of volcanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agustin-Flores J, Siebe C, Guilbaud M-N (2011) Geology and geochemistry of Pelagatos, Cerro del Agua, and Dos Cerros monogenetic volcanoes in the Sierra Chichinautzin volcanic field, south of Mexico City. J Volcanol Geoth Res 201(1–4):143–162

    Article  Google Scholar 

  • Agustin-Flores J, Németh K, Cronin SJ, Lindsay JM, Kereszturi G, Brand BD, Smith IEM (2014) Phreatomagmatic eruptions through unconsolidated coastal plain sequences, Maungataketake, Auckland volcanic field (New Zealand). J Volcanol Geoth Res 276:46–63

    Article  Google Scholar 

  • Andrew REB, Gudmundsson A (2007) Distribution, structure, and formation of Holocene lava shields in Iceland. J Volcanol Geoth Res 168(1–4):137–154

    Article  Google Scholar 

  • Auer A, Martin U, Németh K (2007) The Fekete-hegy (Balaton Highland Hungary) “soft-substrate” and “hard-substrate” maar volcanoes in an aligned volcanic complex—Implications for vent geometry, subsurface stratigraphy and the paleoenvironmental setting. J Volcanol Geoth Res 159(1–3):225–245

    Article  Google Scholar 

  • Blaikie TN, Ailleres L, Cas RAF, Betts PG (2012) Three-dimensional potential field modelling of a multi-vent maar-diatreme—The Lake Coragulac maar, Newer Volcanics Province, south-eastern Australia. J Volcanol Geoth Res 235:70–83

    Article  Google Scholar 

  • Bolos X, Planaguma L, Marti J (2014) Volcanic stratigraphy of the Quaternary La Garrotxa volcanic field (north-east Iberian Peninsula). J Quat Sci 29(6):547–560

    Article  Google Scholar 

  • Breard ECP, Lube G, Cronin SJ, Fitzgerald R, Kennedy B, Scheu B, Montanaro C, White JDL, Tost M, Procter JN, Moebis A (2014) Using the spatial distribution and lithology of ballistic blocks to interpret eruption sequence and dynamics: August 6 2012 Upper Te Maari eruption, New Zealand. J Volcanol Geoth Res 286:373–386

    Article  Google Scholar 

  • Brenna M, Cronin SJ, Smith IEM, Sohn YK, Németh K (2010) Mechanisms driving polymagmatic activity at a monogenetic volcano, Udo, Jeju Island, South Korea. Contrib Miner Petrol 160(6):931–950

    Article  Google Scholar 

  • Brenna M, Cronin SJ, Németh K, Smith IEM, Sohn YK (2011) The influence of magma plumbing complexity on monogenetic eruptions, Jeju Island, Korea. Terra Nova 23(2):70–75

    Google Scholar 

  • Brenna M, Cronin SJ, Smith IEM, Sohn YK, Maas R (2012) Spatio-temporal evolution of a dispersed magmatic system and its implications for volcano growth, Jeju Island Volcanic Field, Korea. Lithos 148:337–352

    Article  Google Scholar 

  • Camp VE, Roobol MJ (1989) The Arabian Continental Alkali Basalt Province. 1. Evolution of Harrat-Rahat, Rahat, Kingdom-of-Saudi-Arabia. Geol Soc Am Bull 101(1):71–95

    Article  Google Scholar 

  • Camp VE, Roobol MJ, Hooper PR (1991) The Arabian Continental Alkali Basalt Province. 2. Evolution of Harrats Khaybar, Ithnayn, and Kura, Kingdom of Saudi-Arabia. Geol Soc Am Bull 103(3):363–391

    Article  Google Scholar 

  • Carn SA (2000) The Lamongan volcanic field, East Java, Indonesia: physical volcanology, historic activity and hazards. J Volcanol Geoth Res 95:81–108

    Article  Google Scholar 

  • Cole JW, Graham IJ, Hackett WR, Houghton BF (1986) Volcanology and petrology of the quaternary composite volcanoes of Tongariro volcanic centre, Taupo volcanic zone. Bull R Soc New Zealand 23:224–250

    Google Scholar 

  • Connor CB, Conway FM (2000) Basaltic volcanic fields. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic Press, San Diego, pp 331–343

    Google Scholar 

  • Connor CB, Lichtner PC, Conway FM, Hill BE, Ovsyannikov AA, Federchenko I, Doubik Y, Shapar VN, Taran YA (1997) Cooling of an igneous dike 20 year after intrusion. Geology 25(8):711–714

    Article  Google Scholar 

  • Conway FM, Ferrill DA, Hall CM, Morris AP, Stamatakos JA, Connor CB, Halliday AN, Condit C (1997) Timing of basaltic volcanism along the Mesa Butte Fault in the San Francisco volcanic field, Arizona, from 40Ar/39Ar dates: implications for longevity of cinder cone alignments. J Geophys Res 102(B1):815–824

    Article  Google Scholar 

  • Courtland LM, Kruse SE, Connor CB, Connor LJ, Savov IP, Martin KT (2012) GPR investigation of tephra fallout, Cerro Negro volcano, Nicaragua: a method for constraining parameters used in tephra sedimentation models. Bull Volc 74(6):1409–1424

    Article  Google Scholar 

  • Courtland L, Kruse S, Connor C (2013) Violent Strombolian or not? Using ground-penetrating radar to distinguish deposits of low- and high-energy scoria cone eruptions. Bull Volc 75(12):1–13

    Google Scholar 

  • Delgado Granados H, Martin del Pozzo AL (1993) Pliocene to Holocene volcanic geology at the junction of Las Cruces, Chichinautzin and Ajusco ranges, southwest of Mexico City. Geofis Int 32(3):511–522

    Google Scholar 

  • Erlund EJ, Cashman KV, Wallace PJ, Pioli L, Rosi M, Johnson E, Granados HD (2010) Compositional evolution of magma from Paricutin Volcano, Mexico: the tephra record. J Volcanol Geoth Res 197(1–4):167–187

    Article  Google Scholar 

  • Fisher RV, Schmincke H-U (1984) Pyroclastic rocks. Springer, Heidelberg, pp 1–474

    Book  Google Scholar 

  • Foshag WF, Gonzalez RJ (1956) Birth and development of Paricutin volcano, Mexico. United States Geological Survey Bulletin 965-D:355-489

  • Gamble JA, Price RC, Smith IEM, McIntosh WC, Dunbar NW (2003) Ar-40/Ar-39 geochronology of magmatic activity, magma flux and hazards at Ruapehu volcano, Taupo Volcanic Zone, New Zealand. J Volcanol Geoth Res 120(3–4):271–287

    Article  Google Scholar 

  • Genareau K, Valentine GA, Moore G, Hervig RL (2010) Mechanisms for transition in eruptive style at a monogenetic scoria cone revealed by microtextural analyses (Lathrop Wells volcano, Nevada, USA). Bull Volc 72(5):593–607

    Article  Google Scholar 

  • Godchaux M, Bonnichsen B (2002) Syneruptive magma-water and posteruptive lava-water interactions in the Western Snake River Plain, Idaho, during the past 12 million years. In: Bonnichsen B, White CM, McCurry M (eds) Tectonic and magmatic evolution of the Snake River Plain Volcanic Province. University of Idaho, Moscow, Idaho, Idaho Geological Survey, pp 387–435

    Google Scholar 

  • Greeley R (1982) The Snake River Plain, Idaho: representative of a new category of volcanism. J Geophys Res 87(B4):2705–2712

    Article  Google Scholar 

  • Guilbaud M-N, Siebe C, Layer P, Salinas S, Castro-Govea R, Garduno-Monroy VH, Le Corvec N (2011) Geology, geochronology, and tectonic setting of the Jorullo Volcano region, Michoacan, Mexico. J Volcanol Geoth Res 201(1–4):97–112

    Article  Google Scholar 

  • Gutmann JT (2002) Strombolian and effusive activity as precursors to phreatomagmatism: eruptive sequence at maars of the Pinacate volcanic field, Sonora, Mexico. J Volcanol Geoth Res 113(1–2):345–356

    Article  Google Scholar 

  • Gutmann JT, Sheridan M (1978) Geology of the Pinacate volcanic field. Arizona Bur Geol Mining Tech Spec Pap 2:47–59

    Google Scholar 

  • Hasenaka T (1994) Size, distribution, and magma output rate for shield volcanoes of the Michoacan-Guanajuato volcanic field, Central Mexico. J Volcanol Geoth Res 63(1–2):13–31

    Article  Google Scholar 

  • Hasenaka T, Carmichael ISE (1985) A compilation of location, size, and geomorphological parameters of volcanoes of the Michoacan-Guanajuato volcanic field, central Mexico. Geofis Int 24(4):577–608

    Google Scholar 

  • Hasenaka T, Carmichael ISE (1987) The cinder cones of Michoacán-Guanajuato, Central Mexico: petrology and chemistry. J Petrol 28(2):241–269

    Article  Google Scholar 

  • Herrero-Hernandez A, Javier Lopez-Moro F, Luis Gallardo-Millan J, Martin-Serrano A, Gomez-Fernandez F (2015) Volcanism-sedimentation interaction in the Campo de Calatrava volcanic field (Spain): a magnetostratigraphic and geochronological study. Int J Earth Sci 104(1):103–122

    Article  Google Scholar 

  • Hill BE, Connor CB, Jarzemba MS, La Femina PC, Navarro M, Strauch W (1998) 1995 eruptions of Cerro Negro volcano, Nicaragua, and risk assessment for future eruptions. Geol Soc Am Bull 110(10):1231–1241

    Article  Google Scholar 

  • Hobden BJ, Houghton BF, Lanphere MA, Nairn IA (1996) Growth of the Tongariro volcanic complex: new evidence from K-Ar age determinations. NZ J Geol Geophys 39(1):151–154

    Article  Google Scholar 

  • Hobden BJ, Houghton BF, Davidson JP, Weaver SD (1999) Small and short-lived magma batches at composite volcanoes: time windows at Tongariro volcano, New Zealand. Journal of theological Society 156:865–868

    Google Scholar 

  • Hoshizumi H, Uto K, Watanabe K (1999) Geology and eruptive history of Unzen volcano, Shimabara Peninsula, Kyushu, SW Japan. J Volcanol Geoth Res 89(1–4):81–94

    Article  Google Scholar 

  • Houghton BF, Gonnermann HM (2008) Basaltic explosive volcanism: constraints from deposits and models. Chem Erde 68:117–140

    Article  Google Scholar 

  • Houghton BF, Hackett WR (1984) Strombolian and phreatomagmatic deposits of Ohakune Craters, Ruapehu, New Zealand; a complex interaction between external water and rising basaltic magma. J Volcanol Geoth Res 21(3–4):207–231

    Article  Google Scholar 

  • Houghton BF, Wilson CJN, Smith IEM (1999) Shallow-seated controls on styles of explosive basaltic volcanism: a case study from New Zealand. J Volcanol Geoth Res 91(1):97–120

    Article  Google Scholar 

  • Inbar M, Hubp JL, Ruiz LV (1994) The geomorphological evolution of the Paricutin cone and lava flows, Mexico, 1943–1990. Geomorphology 9:57–76

    Article  Google Scholar 

  • Inbar M, Gilichinsky M, Melekestsev I, Melnikov D, Zaretskaya N (2011) Morphometric and morphological development of Holocene cinder cones: a field and remote sensing study in the Tolbachik volcanic field, Kamchatka. J Volcanol Geoth Res 201(1–4):301–311

    Article  Google Scholar 

  • Jankovics EM, Harangi S, Kiss B, Ntaflos T (2012) Open system evolution of the Fuzes-to alkaline basaltic magma, western Pannonian Basin; constraints from mineral textures and compositions. Lithos 140–141:25–37

    Article  Google Scholar 

  • Jordan SC, Cas RAF, Hayman PC (2013) The origin of a large (>3 km) maar volcano by coalescence of multiple shallow craters: lake Purrumbete maar, southeastern Australia. J Volcanol Geoth Res 254:5–22

    Article  Google Scholar 

  • Jordan SC, Jowitt SM, Cas RAF (2015) Origin of temporal—compositional variations during the eruption of Lake Purrumbete Maar, Newer Volcanics Province, southeastern Australia. Bull Volc 77(1):1–15

    Article  Google Scholar 

  • Kereszturi G, Németh K (2012) Monogenetic basaltic olcanoes: genetic classification, growth, geomorphology and degradation. In: Németh K (ed) Updates in volcanology—new advances in understanding volcanic systems. InTech Open, Rijeka, Croatia, pp 3–89

  • Kereszturi G, Csillag G, Németh K, Sebe K, Balogh K, Jáger V (2010) Volcanic architecture, eruption mechanism and landform evolution of a Pliocene intracontinental basaltic polycyclic monogenetic volcano from the Bakony-Balaton highland volcanic field, Hungary. Cent Eur J Geosci 2(3):362–384

    Google Scholar 

  • Kereszturi G, Németh K, Csillag G, Balogh K, Kovács J (2011) The role of external environmental factors in changing eruption styles of monogenetic volcanoes in a Mio/Pleistocene continental volcanic field in western Hungary. J Volcanol Geoth Res 201(1–4):227–240

    Article  Google Scholar 

  • Kereszturi G, Németh K, Cronin SJ, Agustín-Flores J, Smith IEM, Lindsay J (2013) A model for calculating eruptive volumes for monogenetic volcanoes—implication for the Quaternary Auckland Volcanic Field, New Zealand. J Volcanol Geoth Res 266:16–33

    Article  Google Scholar 

  • Kereszturi G, Németh K, Cronin SJ, Procter J, Agustin-Flores J (2014) Influences on the variability of eruption sequences and style transitions in the Auckland Volcanic Field, New Zealand. J Volcanol Geoth Res 286:101–115

    Article  Google Scholar 

  • Kiyosugi K, Connor CB, Zhao D, Connor LJ, Tanaka K (2010) Relationships between volcano distribution, crustal structure, and P-wave tomography: an example from the Abu Monogenetic Volcano Group, SW Japan. Bull Volcanol 72(3):331–340

    Article  Google Scholar 

  • Kshirsagar PV, Sheth HC, Shaikh B (2011) Mafic alkalic magmatism in central Kachchh, India: a monogenetic volcanic field in the northwestern Deccan Traps. Bull Volc 73(5):595–612

    Article  Google Scholar 

  • Le Corvec N, Bebbington MS, Lindsay JM, McGee LE (2013a) Age, distance, and geochemical evolution within a monogenetic volcanic field: analyzing patterns in the Auckland Volcanic Field eruption sequence. Geochem Geophys Geosyst 14(9):3648–3665

    Article  Google Scholar 

  • Le Corvec N, Spoerli KB, Rowland J, Lindsay J (2013b) Spatial distribution and alignments of volcanic centers: clues to the formation of monogenetic volcanic fields. Earth Sci Rev 124:96–114

    Article  Google Scholar 

  • Lorenz V (1985) Maars and diatremes of phreatomagmatic origin: a review. Trans Geol Soc South Afr 88:459–470

    Google Scholar 

  • Lorenz V (1986) On the growth of maars and diatremes and its relevance to the formation of tuff rings. Bull Volc 48:265–274

    Article  Google Scholar 

  • Luhr JF, Carmichael ISE (1985) Jorullo volcano, Michoacan, Mexico (1759–1774): the earlier stages of fractionation in calk-alkaline magmas. Contrib Mineral Petrol 90:142–161

    Article  Google Scholar 

  • Luhr JF, Simkin T (1993) Paricutin. The volcano born in a Mexican cornfield. Geosciences Press, Phoenix, pp 1–427

    Google Scholar 

  • MacDonald GA (1972) Volcanoes. Prentice-Hall, Englewood Cliffs, pp 1–510

    Google Scholar 

  • Manville V, Németh K, Kano K (2009) Source to sink: a review of three decades of progress in the understanding of volcaniclastic processes, deposits, and hazards. Sed Geol 220:136–161

    Article  Google Scholar 

  • McGee LE, Beier C, Smith IEM, Turner SP (2011) Dynamics of melting beneath a small-scale basaltic system: a U-Th-Ra study from Rangitoto volcano, Auckland volcanic field, New Zealand. Contrib Miner Petrol 162(3):547–563

    Article  Google Scholar 

  • McGee LE, Smith IEM, Millet M-A, Handley HK, Lindsay AM (2013) Asthenospheric control of melting processes in a monogenetic basaltic system: a case study of the Auckland Volcanic Field, New Zealand. J Petrol 54(10):2125–2153

    Article  Google Scholar 

  • McKnight SB, Williams SN (1997) Old cinder cone or young composite volcano? The nature of Cerro Negro, Nicaragua. Geology 25(4):339–342

    Article  Google Scholar 

  • Moufti MR, Németh K (2013) The intra-continental Al Madinah Volcanic Field, Western Saudi Arabia: a proposal to establish Harrat Al Madinah as the first volcanic geopark in the Kingdom of Saudi Arabia. Geoheritage 5(3):185–206

    Article  Google Scholar 

  • Murcia H, Németh K, Moufti MR, Lindsay JM, El-Masry N, Cronin SJ, Qaddah A, Smith IEM (2014) Late Holocene lava flow morphotypes of northern Harrat Rahat, Kingdom of Saudi Arabia: implications for the description of continental lava fields. J Asian Earth Sci 84:131–145

    Article  Google Scholar 

  • Nakada S, Shimizu H, Ohta K (1999) Overview of the 1990–1995 eruption at Unzen Volcano. J Volcanol Geoth Res 89(1–4):1–22

    Article  Google Scholar 

  • Nakagawa M, Nairn IA, Kobayashi T (1998) The similar to 10 ka multiple vent pyroclastic eruption sequence at Tongariro Volcanic Centre, Taupo Volcanic Zone, New Zealand—Part 2. Petrological insights into magma storage and transport during regional extension. J Volcanol Geoth Res 86(1–4):45–65

    Article  Google Scholar 

  • Needham AJ, Lindsay JM, Smith IEM, Augustinus P, Shane PA (2011) Sequential eruption of alkaline and sub-alkaline magmas from a small monogenetic volcano in the Auckland Volcanic Field, New Zealand. J Volcanol Geoth Res 201(1–4):126–142

    Article  Google Scholar 

  • Németh K (2010) Monogenetic volcanic fields: origin, sedimentary record, and relationship with polygenetic volcanism. In: Canon-Tapia E, Szakacs A (eds) What Is a Volcano?. Geological Society of America, Boulder, pp 43–66

    Chapter  Google Scholar 

  • Németh K, Martin U, Harangi S (2001) Miocene phreatomagmatic volcanism at Tihany (Pannonian Basin, Hungary). J Volcanol Geoth Res 111(1–4):111–135

    Article  Google Scholar 

  • Németh K, Haller MJ, Siebe C (2011) Maars and scoria cones: the enigma of monogenetic volcanic fields. Journal of Volcanology and Geothermal Research 201(1–4):V–VIII

    Article  Google Scholar 

  • Pardo N, Cronin SJ, Palmer AS, Németh K (2012) Reconstructing the largest explosive eruptions of Mt. Ruapehu, New Zealand: lithostratigraphic tools to understand subplinian-plinian eruptions at andesitic volcanoes. Bull Volc 74(3):617–640

    Article  Google Scholar 

  • Pardo N, Cronin SJ, Németh K, Brenna M, Schipper CI, Breard E, White JDL, Procter J, Stewart B, Agustin-Flores J, Moebis A, Zernack A, Kereszturi G, Lube G, Auer A, Neall V, Wallace C (2014) Perils in distinguishing phreatic from phreatomagmatic ash; insights into the eruption mechanisms of the 6 August 2012 Mt. Tongariro eruption, New Zealand. J Volcanol Geoth Res 286:397–414

    Article  Google Scholar 

  • Parfitt EA (2004) A discussion of the mechanisms of explosive basaltic eruptions. J Volcanol Geoth Res 134(1–2):77–107

    Article  Google Scholar 

  • Pedersen GBM, Grosse P (2014) Morphometry of subaerial shield volcanoes and glaciovolcanoes from Reykjanes Peninsula, Iceland: effects of eruption environment. J Volcanol Geoth Res 282:115–133

    Article  Google Scholar 

  • Pioli L, Erlund E, Johnson E, Cashman K, Wallace R, Rosi M, Granados HD (2008) Explosive dynamics of violent Strombolian eruptions: the eruption of Paricutin Volcano 1943–1952 (Mexico). Earth Planet Sci Lett 271(1–4):359–368

    Article  Google Scholar 

  • Procter JN, Cronin SJ, Zernack AV, Lube G, Stewart RB, Németh K, Keys H (2014) Debris flow evolution and the activation of an explosive hydrothermal system; Te Maari, Tongariro, New Zealand. J Volcanol Geoth Res 286:303–316

    Article  Google Scholar 

  • Riggs N, Carrasco-Nunez G (2004) Evolution of a complex isolated dome system, Cerro Pizarro, central Mexico. Bull Volc 66(4):322–335

    Article  Google Scholar 

  • Rowland SK, Jurado-Chichay Z, Ernst WG, Walker GPL (2009) Pyroclastic deposits and lava flows from the 1759–1774 eruption of El Jorullo, Mexico; aspects of “violent Strombolian” activity and comparison with Paricutin. Spec Publ Int Assoc Volcanol Chem Earth’s Interior 2:105–128

    Google Scholar 

  • Runge MG, Bebbington MS, Cronin SJ, Lindsay JM, Kenedi CL, Moufti MRH (2014) Vents to events: determining an eruption event record from volcanic vent structures for the Harrat Rahat, Saudi Arabia. Bull Volcanol 76(3):1–16

    Article  Google Scholar 

  • Shane P, Gehrels M, Zawalna-Geer A, Augustinus P, Lindsay J, Chaillou I (2013) Longevity of a small shield volcano revealed by crypto-tephra studies (Rangitoto volcano, New Zealand): change in eruptive behavior of a basaltic field. J Volcanol Geoth Res 257:174–183

    Article  Google Scholar 

  • Shaw SJ, Woodland AB, Hopp J, Trenholm ND (2010) Structure and evolution of the Rockeskyllerkopf Volcanic Complex, West Eifel Volcanic Field, Germany. Bull Volc 72:971–990

    Article  Google Scholar 

  • Sheth H (2014) What drives centuries-long polygenetic scoria cone activity at Barren Island volcano? J Volcanol Geoth Res 289:64–80

    Article  Google Scholar 

  • Sheth H, Cañón-Tapia E (2015) Are flood basalt eruptions monogenetic or polygenetic? Int J Earth Sci. doi:10.1007/s00531-014-1048-z

    Google Scholar 

  • Siebe C, Rodriguez-Lara V, Schaaf P, Abrams M (2004a) Geochemistry, Sr-Nd isotope composition, and tectonic setting of Holocene Pelado, Guespalapa and Chichinautzin scoria cones, south of Mexico city. J Volcanol Geoth Res 130(3–4):197–226

    Article  Google Scholar 

  • Siebe C, Rodriguez-Lara V, Schaaf P, Abrams M (2004b) Radiocarbon ages of Holocene Pelado, Guespalapa, and Chichinautzin scoria cones, south of Mexico City: implications for archaeology and future hazards. Bull Volc 66(3):203–225

    Article  Google Scholar 

  • Sohn YK (1996) Hydrovolcanic processes forming basaltic tuff rings and cones on Cheju Island, Korea. Geol Soc Am Bull 108(10):1199–1211

    Article  Google Scholar 

  • Tadini A, Bonali FL, Corazzato C, Cortes JA, Tibaldi A, Valentine GA (2014) Spatial distribution and structural analysis of vents in the Lunar Crater Volcanic Field (Nevada, USA). Bull Volc 76(11):1–15

    Google Scholar 

  • Takada A (1994) The influence of regional stress and magmatic input on styles of monogenetic and polygenetic volcanism. J Geophys Res 99(B7):13563–13573

    Article  Google Scholar 

  • Tchamabe BC, Youmen D, Owona S, Issa Ohba T, Neemeth K, Ngapna MN, Asaah ANE, Aka FT, Tanyileke G, Hell JV (2013) Eruptive history of the Barombi Mbo Maar, Cameroon Volcanic Line, Central Africa: constraints from volcanic facies analysis. Cent Eur J Geosci 5(4):480–496

    Google Scholar 

  • Valentine GA (2012) Shallow plumbing systems for small-volume basaltic volcanoes, 2: evidence from crustal xenoliths at scoria cones and maars. J Volcanol Geoth Res 223:47–63

    Article  Google Scholar 

  • Valentine GA, Cortes JA (2013) Time and space variations in magmatic and phreatomagmatic eruptive processes at Easy Chair (Lunar Crater Volcanic Field, Nevada, USA). Bull Volc 75(9):1–13

    Google Scholar 

  • Valentine GA, de Vries BvW (2014) Unconventional maar diatreme and associated intrusions in the soft sediment-hosted Mardoux structure (Gergovie, France). Bull Volc 76(3):1–16

    Google Scholar 

  • Valentine GA, Gregg TKP (2008) Continental basaltic volcanoes—processes and problems. J Volcanol Geoth Res 177(4):857–873

    Article  Google Scholar 

  • Valentine GA, White JDL (2012) Revised conceptual model for maar-diatremes: subsurface processes, energetics, and eruptive products. Geology 40(12):1111–1114

    Article  Google Scholar 

  • Valentine GA, Perry FV, Krier D, Keating GN, Kelley RE, Coghill AH (2006) Small-volume basaltic volcanoes: Eruptive products and processes, and posteruptive geomorphic evolution in Crater Flat (Pleistocene), southern Nevada. Geol Soc Am Bull 118(11–12):1313–1330

    Article  Google Scholar 

  • Valentine GA, Graettinger AH, Sonder I (2014) Explosion depths for phreatomagmatic eruptions. Geophys Res Lett 41(9):3045–3051

    Article  Google Scholar 

  • van Otterloo J, Cas RAF, Sheard MJ (2013) Eruption processes and deposit characteristics at the monogenetic Mt. Gambier Volcanic Complex, SE Australia: implications for alternating magmatic and phreatomagmatic activity. Bull Volc 75(8):1–21

    Google Scholar 

  • Van Otterloo J, Raveggi M, Cas RAF, Maas R (2014) Polymagmatic activity at the monogenetic Mt Gambier Volcanic Complex in the Newer Volcanics Province, SE Australia: new insights into the occurrence of intraplate volcanic activity in Australia. J Petrol 55(7):1317–1351

    Article  Google Scholar 

  • Vespermann D, Schmincke H-U, Ballard RD (2000) Scoria cones and tuff rings. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, San Diego, pp 683–694

    Google Scholar 

  • Walker GPL (1993) Basaltic-volcano systems. In: Prichard HM, Alabaster T, Harris NBW, Nearly CR (eds) Magmatic processes and plate tectonics. Geological Society, London, Special Publications, pp 3–38

    Google Scholar 

  • Walker GPL (2000) Basaltic volcanoes and volcanic systems. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic Press, San Diego, pp 283–289

    Google Scholar 

  • White JDL, Ross PS (2011) Maar-diatreme volcanoes: a review. J Volcanol Geoth Res 201(1–4):1–29

    Article  Google Scholar 

  • Williams H, McBirney AR (1979) Volcanology. Freeman, Cooper & Co., San Francisco, pp 1–397

    Google Scholar 

Download references

Acknowledgments

The original lecture that formed the basis of this paper was presented as a keynote lecture during the Basalt 2013 conference in Görlitz, Germany. To make that happen, we have to say a big thank you to the conference organizers, particularly to Jörg Büchner (Senckenberg Museum of Natural History Görlitz), Olaf Tietz (Senckenberg Museum of Natural History Görlitz) and Vladislav Rapprich (Czech Geological Survey, Prague), for the invitation to present the keynote speech. This paper also contains numerous aspects of the subject presented during Basalt 2013 in the form of posters, particularly by Javier Agustin-Flores (Massey University), Hugo Murcia (University of Auckland) and Bob Stewart (Massey University). We would also like to say thank you to Zoltán Pécskay (ATOMKI, Debrecen) who encouraged us to prepare this review and managed the successful volcanology session during the Basalt 2013 meeting. Comments by Mark Bebbington and Kate Arentsen (both from Massey University) helped to keep the manuscript focused and reader friendly. Journal reviewers, Gianluca Groppelli, Volker Lorenz and Greg Valentine, have provided enlightening reviews that also contributed significantly to improving this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Németh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (KML 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Németh, K., Kereszturi, G. Monogenetic volcanism: personal views and discussion. Int J Earth Sci (Geol Rundsch) 104, 2131–2146 (2015). https://doi.org/10.1007/s00531-015-1243-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-015-1243-6

Keywords

Navigation