Skip to main content
Log in

Rigidity of bordered polyhedral surfaces

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

This paper investigates the rigidity of bordered polyhedral surfaces. Using the variational principle, we show that bordered polyhedral surfaces are determined by boundary value and discrete curvatures on the interior edges. As a corollary, we reprove the classical result that two Euclidean cyclic polygons (or hyperbolic cyclic polygons) are congruent if the lengths of their sides are equal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Andreev, E.M.: On convex polyhedra in Lobachevskii spaces. Mat. Sb. (N.S.), 81(123):3 (1970), 445–478; Math. USSR-Sb. 10:3, 413–440 (1970)

  2. Ba, T., Zhou, Z.: Rigidity of polyhedral surfaces with finite boundary components. Sciencepaper Online, http://www.paper.edu.cn/releasepaper/content/202104-130

  3. Bobenko, A.I., Pinkall, U., Springborn, B.A.: Discrete conformal maps and ideal hyperbolic polyhedra. Geom. Topol. 19, 2155–2215 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bobenko, A.I., Springborn, B.A.: Variational principles for circle patterns and Koebe’s theorem. Trans. Am. Math. Soc. 356, 659–689 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bobenko, A.I., Springborn, B.A.: A discrete Laplace–Beltrami operator for simplicial surfaces. Discrete Comput. Geom. 38, 740–756 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chow, B., Luo, F.: Combinatorial Ricci flows on surfaces. J. Differ. Geom. 63, 97–129 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Colin de Verdiere, Y.: Un principe variationnel pour les empilements de cercles. Invent. Math. 104, 655–669 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Connelly, R.: Rigidity of packings. Eur. J. Combin. 29, 1862–1871 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dai, J., Gu, X.D., Luo, F.: Variational Principles for Discrete Surfaces. Advanced Lectures in Mathematics, vol. 4. Higher Education Press, Beijing (2008)

    MATH  Google Scholar 

  10. Ge, H., Hua, B., Zhou, Z.: Circle patterns on surfaces of finite topological type. Am. J. Math. 143, 1397–1430 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ge, H., Hua, B., Zhou, Z.: Combinatorial Ricci flows for ideal circle patterns. Adv. Math. 383, 107698 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Glickenstein, D.: Discrete conformal variations and scalar curvature on piecewise flat two and three dimensional manifolds. J. Differ. Geom. 87, 201–238 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Glickenstein, D., Thomas, J.: Duality structures and discrete conformal variations of piecewise constant curvature surfaces. Adv. Math. 320, 250–278 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gu, X., Guo, R., Luo, F., Sun, J., Wu, T.: A discrete uniformization theorem for polyhedral surfaces II. J. Differ. Geom. 109, 431–466 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Gu, X., Luo, F., Sun, J., Wu, T.: A discrete uniformization theorem for polyhedral surfaces. J. Differ. Geom. 109, 223–256 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Guo, R.: Local rigidity of inversive distance circle packing. Trans. Am. Math. Soc. 363, 4757–4776 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guo, R., Luo, F.: Rigidity of polyhedral surfaces, II. Geom. Topol. 13(4), 1265–1312 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kourimska, H., Skuppin, L., Springborn, B.: A variational principle for cyclic polygons with prescribed edge lengths. Advances in Discrete Differential Geometry, pp. 177–195 (2016)

  19. Leibon, G.: Characterizing the Delaunay decompositions of compact hyperbolic surfaces. Geom. Topol. 6(1), 361–391 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Luo, F.: Rigidity of polyhedral surfaces. arXiv:math.GT/0612714

  21. Luo, F.: Rigidity of polyhedral surfaces, III. Geom. Topol. 15, 2299–2319 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Luo, F.: Rigidity of polyhedral surfaces, I. J. Differ. Geom. 96, 241–302 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Penner, R.C.: The decorated Teichmüller space of punctured surfaces. Commun. Math. Phys. 113, 299–339 (1987)

    Article  MATH  Google Scholar 

  24. Pinelis, I.: Cyclic polygons with given edge lengths: existence and uniqueness. J. Geom. 82, 156–171 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2, 15–36 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rivin, I.: Euclidean structures on simplicial surfaces and hyperbolic volume. Ann. Math. 139, 553–580 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rivin, I.: A characterization of ideal polyhedra in hyperbolic 3-space. Ann. Math. 143, 51–70 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schlenker, J.M.: Small deformations of polygons and polyhedra. Trans. Am. Math. Soc. 359, 2155–2189 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Stanko, B.: Zur Begründung der elementaren Inhaltslehre in der hyperbolishchen Ebene. Math. Ann. 180, 256–268 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  30. Stephenson, K.: Introduction to Circle Packing: The Theory of Discrete Analytic Functions. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  31. Thurston, W.: Geometry and Topology of 3-Manifolds. Princeton Lecture Notes (1976)

  32. Xu, X.: Rigidity of inversive distance circle packings revisited. Adv. Math. 332, 476–509 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Xu, X.: A new proof of Bowers–Stephenson conjecture. Math. Res. Lett. 28, 1283–1306 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xu, X.: Rigidity and deformation of discrete conformal structures on polyhedral surfaces. preprint arXiv:2103.05272

  35. Zeng, W., Guo, R., Luo, F., Gu, X.: Discrete heat kernel determines discrete Riemannian metric. Graph. Models 74, 121–129 (2012)

    Article  Google Scholar 

  36. Zhou, Z.: Circle patterns with obtuse exterior intersection angles. preprint arXiv:1703.01768

  37. Zhou, Z.: Producing circle patterns via configurations. preprint arXiv:2010.13076

Download references

Acknowledgements

The authors would like to thank Ze Zhou, for his encouragement and helpful discussions. They also would like to thank NSF of China (No. 11631010) and Postgraduate Scientific Research Innovation Project of Hunan Province (CX20210397) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Te Ba.

Additional information

Communicated by A. Mondino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Some formulas in Trigonometry

This section is devoted to some results from trigonometry.

Proposition A.1

(Cosine law) Let \(l_{1}\), \(l_{2}\), \(l_{3}\) be the edge lengths of a geometric triangle and \(\theta _{1}\), \(\theta _{2}\), \(\theta _{3}\) be the opposite inner angles. Set \(\{i,j,k\}=\{1,2,3\}\).

(a):

In Euclidean geometry, we have

$$\begin{aligned} \cos \theta _{i}=\frac{-l^2_{i}+l^2_{j}+l^2_{k}}{2l_{j}l_{k}},\quad 1=\frac{\cos \theta _{i}+\cos \theta _{j}\cos \theta _{k}}{\cos \theta _{j}\cos \theta _{k}}. \end{aligned}$$
(b):

In hyperbolic geometry, we have

$$\begin{aligned} \cos \theta _{i}=\frac{-\cosh l_{i}+\cosh l_{j}\cosh l_{k}}{\sinh l_{j}\sinh l_{k}},\quad \cosh l_{i}=\frac{\cos \theta _{i}+\cos \theta _{j}\cos \theta _{k}}{\sin \theta _{j}\sin \theta _{k}}. \end{aligned}$$
(c):

In spherical geometry, we have

$$\begin{aligned} \cos \theta _{i}=\frac{\cos l_{i}-\cos l_{j}\cos l_{k}}{\sin l_{j}\sin l_{k}},\quad \cos l_{i}=\frac{\cos \theta _{i}+\cos \theta _{j}\cos \theta _{k}}{\sin \theta _{j}\sin \theta _{k}}. \end{aligned}$$

Proposition A.2

(Tangent law) Let \(l_{1}\), \(l_{2}\), \(l_{3}\) be three edges of a triangle and \(\theta _{1}\), \(\theta _{2}\), \(\theta _{3}\) are the corresponding inner angles. Set

$$\begin{aligned} h_{i}=\cos \alpha _{i}\coth \frac{l_{i}}{2},\ h'_{i}=r_{i}\tan \frac{\theta _{i}}{2},\ s_{i}=\cos \alpha _{i}\cot \frac{l_{i}}{2},\ s'_{i}=\sinh r_{i}\tan \frac{\theta _{i}}{2}, \end{aligned}$$

where \(i\in \{1,2,3\}\) and \(\alpha _{i}=\frac{1}{2}(\theta _{i}-\theta _{j}-\theta _{k})\), \(r_{i}=\frac{1}{2}(l_{j}+l_{k}-l_{i})\). Then \(h_{i}\), \(h'_{i}\) (resp. \(s_{i}\), \(s'_{i}\)) are positive numbers independent of indices in hyperbolic (resp. spherical) geometry.

Appendix B Basic results about closed forms

In this section, we give a simple introduction to some results on differential forms and convex functions constructed by differential forms. One refers to [3, 21] for more background.

A differential 1-form \(\omega =\sum ^{n}_{i=1}f_{i}(x)\textrm{d}x_{i}\) is said to be continuous in an open set \(U\subset {\mathbb {R}}^{n}\) if each \(f_{i}(x)\) is continuous on U. A continuous 1-form is called closed if \(\int _{\partial \gamma }\omega =0\) for each piecewise \(C^{1}\)-smooth null homologous loop \(\gamma \) in U.

Proposition B.1

Suppose X is an open set in \({\mathbb {R}}^{n}\) and \(A\subset X\) is an open subset bounded by a smooth \((n-1)\)-dimensional submanifold in X. If \(\omega =\sum ^{n}_{i=1}f_{i}(x)\textrm{d}x_{i}\) is a continuous 1-form on X such that \(\omega |_{A}\) and \(\omega |_{X-{\overline{A}}}\) are closed where \({\overline{A}}\) is the closure of A in X, then \(\omega \) is closed in X.

Proposition B.2

Suppose \(X\subset {\mathbb {R}}^{n}\) is an open convex set and \(A\subset X\) is an open subset of X bounded by a codimension-1 real analytic submanifold in X. If \(\omega =\sum ^{n}_{i=1}f_{i}(x)\textrm{d}x_{i}\) is a continuous closed 1-form on X such that \(F(x)=\int ^{x}_{a}\omega \) is locally convex in A and in \(X-{\overline{A}}\), then F(x) is convex in X.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ba, T., Li, S. & Xu, Y. Rigidity of bordered polyhedral surfaces. Calc. Var. 62, 78 (2023). https://doi.org/10.1007/s00526-022-02422-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02422-1

Mathematics Subject Classification

Navigation