Skip to main content
Log in

On the prescribed scalar curvature problem with very degenerate prescribed functions

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We revisit the well known prescribed scalar curvature problem

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u=\big (1+\varepsilon K(x)\big )u^{2^*-1}, u(x)>0,~~ &{}{x\in \mathbb {R}^N},\\ u\in \mathcal {D}^{1,2}(\mathbb {R}^N),\\ \end{array}\right. } \end{aligned}$$

where \(2^*=\frac{2N}{N-2}\), \(N\ge 5\), \(\varepsilon >0\) and \(K(x)\in C^1(\mathbb {R}^N)\cap L^{\infty }(\mathbb {R}^N)\). It is known that there are a number of results related to the existence of solutions concentrating at the isolated critical points of K(x). However, if K(x) has non-isolated critical points with different degenerate rates along different directions, whether there exist solutions concentrating at these points is still an open problem. We give a certain positive answer to this problem via applying a blow-up argument based on local Pohozaev identities and modified finite dimensional reduction method when the dimension of critical point set of K(x) ranges from 1 to \(N-1\), which generalizes some results in Cao et al. (Calc Var Partial Differ Equ 15:403–419, 2002) and Li (J Differ Equ 120:319–410, 1995; Commun Pure Appl Math 49:541–597, 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Our manuscript has no associated data.

References

  1. Ambrosetti, A., Azorero, G., Peral, J.: Perturbation of \(-\Delta u=u^{(N+2)/(N-2)}=0\), the scalar curvature problem in \(\mathbb{R} ^N\) and related topics. J. Funct. Anal. 165, 117–149 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bahri, A., Coron, J.: The scalar-curvature problem on the standard three-dimensional sphere. J. Funct. Anal. 95, 106–172 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bianchi, G.: Non-existence and symmetry of solutions to the scalar curvature equation. Commun. Partial Differ. Equ. 21, 229–234 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao, D., Noussair, E., Yan, S.: On the scalar curvature equation \(-\Delta u=\big (1+\varepsilon K\big )u^{(N+2)/(N-2)}\) in \(\mathbb{R} ^N\). Calc. Var. Partial Differ. Equ. 15, 403–419 (2002)

    Article  MATH  Google Scholar 

  5. Cao, D., Peng, S.: Solutions for the prescribing mean curvature equation. Acta Math. Appl. Sin. 24, 497–510 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao, D., Peng, S., Yan, S.: Singularly perturbed methods for nonlinear elliptic problems. Cambridge University Press (2021)

  7. Chang, S., Yang, P.: A perturbation result in prescribing scalar curvature on \(\mathbb{S} ^n\). Duke Math. J. 64, 27–69 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, C.-C., Lin, C.-S.: Prescribing scalar curvature on \(\mathbb{S} ^n\). I. A priori estimates. J. Differ. Geom. 57, 67–171 (2001)

    MATH  Google Scholar 

  9. Dalbono, F., Franca, M., Sfecci, A.: Multiplicity of ground states for the scalar curvature equation. Annali di Matematica 199, 273–298 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ding, W., Ni, W.-M.: On the elliptic equation \(\Delta u+Ku^{\frac{n+2}{n-2}}=0\) and related topics. Duke Math. J. 52, 485–506 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Druet, O.: From one bubble to several bubbles: the low-dimensional case. J. Differ. Geom. 63, 399–473 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1983)

    MATH  Google Scholar 

  13. Guo, Y., Musso, M., Peng, S., Yan, S.: Non-degeneracy of multi-bubbling solutions for the prescribed scalar curvature equations and applications. J. Funct. Anal. 279, 108553 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guo, Y., Nie, J.: Infinitely many non-radial solutions for the prescribed curvature problem of fractional operator. Discrete Contin. Dyn. Syst. 36, 6873–6898 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Han, Z.: Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent. Ann. Inst. Henri Poincaré Anal. Non Linéaire. 8, 159–174 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kulpa, W.: The Poincaré–Miranda theorem. Am. Math. Mon. 104, 545–550 (1997)

    MATH  Google Scholar 

  17. Leung, M., Zhou, F.: Construction of blow-up sequences for the prescribed scalar curvature equation on \({\mathbb{S} }^N\). III. Aggregated and towering blow-ups. Calc. Var. Partial Differ. Equ. 54, 3009–3035 (2015)

    Article  MATH  Google Scholar 

  18. Li, Y.: On \(-\Delta u = K(x)u^5\) in \(\mathbb{R} ^3\). Commun. Pure Appl. Math. 46, 303–340 (1993)

    Article  Google Scholar 

  19. Li, Y.: Prescribed scalar curvature on \({\mathbb{S} }^n\) and related problems. I. J. Differ. Equ. 120, 319–410 (1995)

    Article  MATH  Google Scholar 

  20. Li, Y.: Prescribed scalar curvature on \({\mathbb{S} }^n\) and related problems. II. Existence and compactness. Commun. Pure Appl. Math. 49, 541–597 (1996)

    Article  Google Scholar 

  21. Li, Y., Ni, W.-M.: On the conformal scalar curvature equation in \(\mathbb{R} ^n\). Duke Math. J. 57, 859–924 (1988)

    Article  MathSciNet  Google Scholar 

  22. Lin, C.-S., Lin, S.-S.: Positive radial solutions for \(\Delta u+Ku^{\frac{n+2}{n-2}}=0\) in \(\mathbb{R} ^n\) and related topics. Appl. Anal. 38, 121–159 (1990)

    Article  MathSciNet  Google Scholar 

  23. Ni, W.-M.: On the elliptic equation \(\Delta u+Ku^{\frac{n+2}{n-2}}=0\), its generalizations, and applications in geometry. Indiana Univ. Math. J. 31, 493–529 (1982)

    Article  MathSciNet  Google Scholar 

  24. Noussair, E., Yan, S.: The scalar curvature equation on \(\mathbb{R} ^n\). Nonlinear Anal. 45, 483–514 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Peng, S., Wang, C., Wei, S.: Construction of solutions for the prescribed scalar curvature problem via local Pohozaev identities. J. Differ. Equ. 267, 2503–2530 (2019)

    Article  MATH  Google Scholar 

  26. Rey, O.: The role of the Green’s function in a non-linear elliptic equation involving the critical Sobolev exponent. J. Funct. Anal. 89, 1–52 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Schoen, R.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Differ. Geom. 20, 479–495 (1984)

    MathSciNet  MATH  Google Scholar 

  28. Schoen, R., Yau, S.: Conformally flat manifolds, Kleinian groups and scalar curvature. Invent. Math. 92, 47–71 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schoen, R., Zhang, D.: Prescribed scalar curvature problem on the \(n\)-sphere. Calc. Var. Partial Differ. Equ. 4, 1–25 (1996)

    Article  MATH  Google Scholar 

  30. Sharaf, K.: On the prescribed scalar curvature problem on \({\mathbb{S} }^N\): part 1, asymptotic estimates and existence results. Differ. Geom. Appl. 49, 423–446 (2016)

    Article  MATH  Google Scholar 

  31. Wei, J., Yan, S.: Infinitely many solutions for the prescribed scalar curvature problem on \({\mathbb{S} } ^N\). J. Funct. Anal. 258, 3048–3081 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yan, S.: Concentration of solutions for the scalar curvature equation on \(\mathbb{R} ^N\). J. Differ. Equ. 163, 239–264 (2000)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Peng Luo and Shuangjie Peng were supported by NSFC Grants (No. 11831009) and the Fundamental Research Funds for the Central Universities (No. CCNU22LJ002). Peng Luo was partially supported by NSFC Grants (No. 12171183) and the Fundamental Research Funds for the Central Universities (No. KJ02072020-0319).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Luo.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Communicated by Andrea Mondino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix: Some estimates

Lemma A.1

(c.f. [6]) For any \(k\in \mathbb {N}^+\) and \(p>1\), it holds

$$\begin{aligned} \left( \sum ^k_{i=1}a_i\right) ^p- a_1^p =O\left( a_1^{p-1}\left( \sum ^k_{i=2}a_i\right) +\sum ^k_{i=2}a_i^p \right) , \end{aligned}$$

and

$$\begin{aligned} \left( \sum ^k_{i=1}a_i\right) ^p-\sum ^k_{i=1}a_i^p = {\left\{ \begin{array}{ll} O\left( \displaystyle \sum _{i\ne j}a_i^{\frac{p}{2}}a_j^{\frac{p}{2}}\right) ,~&{}1<p<2,\\ O\left( \displaystyle \sum _{i\ne j}a_i^{p-1}a_j\right) , ~&{}p\ge 2. \end{array}\right. } \end{aligned}$$

Lemma A.2

For \(a,b>0\) and \(p>1\), it holds

$$\begin{aligned}{} & {} (a+b)^p-a^p-b^p-pa^{p-1}b = {\left\{ \begin{array}{ll} O\big (a^{\alpha _1}b^{p-\alpha _1}\big ) ,~\text{ for } \text{ all }~\alpha _1\in (0,p-1], ~&{}1<p\le 2,\\ O\big (a^{\alpha _2}b^{p-\alpha _2}\big ) ,~\text{ for } \text{ all }~\alpha _2\in [p-2,1], ~&{}2<p\le 3. \end{array}\right. }\nonumber \\ \end{aligned}$$
(A.1)

Proof

At first, for \(1<p\le 2\) and \(t\le 1\), we have

$$\begin{aligned} \begin{aligned} (1+t)^p-1-t^p-pt^{p-1}=&(1+t)^p-1-O(t^{p-1})=O(t + t^{p-1})\\ =&O(t^{p-1}) =O(t^{q}),~\text{ for } \text{ all }~q\in (0,p-1], \end{aligned} \end{aligned}$$
(A.2)

and

$$\begin{aligned} (1+t)^p-1-pt-t^p=O(t^2 + t^{p})=O(t^{p})=O(t^{p-q}),~\text{ for } \text{ all }~q\in [0,p). \end{aligned}$$
(A.3)

If \(a\le b\), then it holds from (A.2),

$$\begin{aligned} (a+b)^p-a^p-b^p-pa^{p-1}b=O(a^{q}b^{p-q}),~\text{ for } \text{ all }~q\in (0,p-1], \end{aligned}$$

and if \(a\ge b\), from (A.3), we get

$$\begin{aligned} (a+b)^p-a^p-b^p-pa^{p-1}b=O(a^{q}b^{p-q}),~\text{ for } \text{ all }~q\in [0,p), \end{aligned}$$

which yields the first part of (A.1).

Additionally, for \(2<p\le 3\) and \(t\le 1\), we have

$$\begin{aligned} \begin{aligned} (1+t)^p-1-t^p-pt^{p-1}=O(t + t^{p-1})=O(t) =O(t^{q}),~\text{ for } \text{ all }~q\in (0,1], \end{aligned} \end{aligned}$$

and

$$\begin{aligned} (1+t)^p-1-t^p-pt=O(t^2 + t^{p})=O(t^{2})=O(t^{p-q}),~\text{ for } \text{ all }~q\in [p-2,p). \end{aligned}$$

Similarly, if \(a\le b\),

$$\begin{aligned} (a+b)^p-a^p-b^p-pa^{p-1}b=O(a^{q}b^{p-q}),~\text{ for } \text{ all }~q\in (0,1], \end{aligned}$$

and if \(a\ge b\),

$$\begin{aligned} (a+b)^p-a^p-b^p-pa^{p-1}b=O(a^{q}b^{p-q}),~\text{ for } \text{ all }~q\in [p-2,p). \end{aligned}$$

Thus (A.1) holds. \(\square \)

Lemma A.3

(c.f. [4]) For any \((y_\varepsilon ,\lambda _\varepsilon )\in D_{\varepsilon }\), \(i,l\in \{1,2\}\) with \(i\ne l\) and \(j=1,\ldots ,N\), it holds

$$\begin{aligned} \int _{\mathbb {R}^N}U_{y_{\varepsilon ,i},\lambda _{\varepsilon ,i}}^{\alpha } U^{2^*-1-\alpha }_{y_{\varepsilon ,l},\lambda _{\varepsilon ,l}}\frac{\partial U_{y_{\varepsilon ,i},\lambda _{\varepsilon ,i}}}{\partial \lambda _{\varepsilon ,i}}= {\left\{ \begin{array}{ll} -\frac{N-2}{2(2^*-1)}\frac{C_NA}{\lambda _{\varepsilon ,i}^{\frac{N}{2}} \lambda _{\varepsilon ,l}^{\frac{N-2}{2}}} +O\left( \frac{1}{\overline{\lambda }_\varepsilon ^{N+1}}\right) , &{} \alpha =2^*-2,\\ O\left( \frac{1}{\overline{\lambda }_\varepsilon ^{\beta _1}}\right) , &{} \alpha \in (0,2^*-2),\\ -\frac{N-2}{2}\frac{C_NA}{\lambda _{\varepsilon ,i}^{\frac{N}{2}}\lambda _{\varepsilon ,l}^{\frac{N-2}{2}}} +O\left( \frac{1}{\overline{\lambda }_\varepsilon ^{N+1}}\right) , &{} \alpha =0, \end{array}\right. } \end{aligned}$$

and

$$\begin{aligned} \int _{\mathbb {R}^N}U_{y_{\varepsilon ,i},\lambda _{\varepsilon ,i}}^{\alpha } U^{2^*-1-\alpha }_{y_{\varepsilon ,l},\lambda _{\varepsilon ,l}}\frac{\partial U_{y_{\varepsilon ,i},\lambda _{\varepsilon ,i}}}{\partial x_j}= {\left\{ \begin{array}{ll} \frac{C_0(y_{\varepsilon ,i,j}-y_{\varepsilon ,l,j})}{\lambda _{\varepsilon ,i}^{\frac{N-2}{2}}\lambda _{\varepsilon ,l}^{ \frac{N-2}{2}}} +O\left( \frac{1}{\overline{\lambda }_\varepsilon ^{N-1}}\right) , &{} \alpha =2^*-2,\\ O\left( \frac{1}{\overline{\lambda }_\varepsilon ^{\beta _2}}\right) , &{} \alpha \in (0,2^*-2),\\ \frac{C_1(y_{\varepsilon ,i,j}-y_{\varepsilon ,l,j})}{\lambda _{\varepsilon ,i}^{\frac{N-2}{2}}\lambda _{\varepsilon ,l}^{ \frac{N-2}{2}}} +O\left( \frac{1}{\overline{\lambda }_\varepsilon ^{N-1}}\right) , &{} \alpha =0, \end{array}\right. } \end{aligned}$$

where the constants \(\overline{\lambda }_\varepsilon =\min \{\lambda _{\varepsilon ,1},\lambda _{\varepsilon ,2}\}\), \(\beta _1=N+1-\frac{N-2}{2}|2^*-2-2\alpha |\), \(\beta _2=N-\frac{N-2}{2}|2^*-2-2\alpha |\) and \(C_0,C_1>0\) are constants depending on N only.

Lemma A.4

Let \(A=\displaystyle \int _{{\mathbb {R}^N}}U_{0,1}^{2^*-1}\), it holds

$$\begin{aligned} A=(N-2)C_N\omega _N~~\text{ with }~~ C_N=\Big (N(N-2)\Big )^{\frac{N-2}{4}}. \end{aligned}$$

Proof

We have

$$\begin{aligned} \begin{aligned} A&=\int _{{\mathbb {R}^N}}U_{0,1}^{2^*-1}dx=\int _{{\mathbb {R}^N}}\frac{C_N^{2^*-1}}{(1+|x|^2 )^{\frac{N+2}{2}}}dx = \int _{{\mathbb {R}^N}}\frac{C_NN(N-2)}{(1+|x|^2 )^{\frac{N+2}{2}}}dx \\&= N(N-2)C_N\omega _N \int _0^{+\infty } \frac{r^{N-1}}{(1+r^2)^{\frac{N+2}{2}}}dr =(N-2)C_N\omega _N, \end{aligned} \end{aligned}$$

where we have used the following fact

$$\begin{aligned}&\int _0^{+\infty } \frac{r^{N-1}}{(1+r^2)^{\frac{N+2}{2}}}dr \mathop {=\!=\!=\!=}\limits ^{s=1+r^2} \int _1^{+\infty } \frac{(s-1)^{\frac{N-2}{2}}}{2s^{\frac{N+2}{2}}}ds \\ =&\int _1^{+\infty } \frac{1}{2s^2}\big (1-\frac{1}{s}\big )^{\frac{N-2}{2}}ds \mathop {=\!=\!=\!=}\limits ^{t=1-\frac{1}{s}} \int _0^1 \frac{1}{2}t^{\frac{N-2}{2}}dt =\frac{1}{N}. \end{aligned}$$

\(\square \)

Lemma A.5

(Poincaré–Miranda theorem, c.f. [16]) Consider n continuous functions of n variables, \(f_1,\ldots ,f_n\). If for each variable \(x_i\), the function \(f_i\) is constantly negative when \(x_i=-1\) and constantly positive when \(x_i=1\), then there is a point in the n–dimensional cube \([-1,1]^n\) at which all functions are simultaneously equal to 0.

The nonexistence of single peak solution

Proposition B.1

Under the condition (K), problem (1.3) does not admit single peak solutions concentrating at certain point on \(\Gamma \).

Proof

Suppose that problem (1.3) has a single peak solution \(u_\varepsilon (x)\) concentrating at some point \(b_1\in \Gamma \) as \(\varepsilon \rightarrow 0\). According to Definition A, we find that there exist \(y_{\varepsilon ,1}\in \mathbb {R}^N\) and \(\lambda _{\varepsilon ,1}\in \mathbb {R}^+\) such that

$$\begin{aligned} \Big \Vert u_\varepsilon - U_{y_{\varepsilon ,1},\lambda _{\varepsilon ,1}}\Big \Vert =o(1), \end{aligned}$$

with

$$\begin{aligned} |y_{\varepsilon ,1}-b_1|=o(1)~\text{ and }~\lambda _{\varepsilon ,1}\rightarrow +\infty . \end{aligned}$$

When taking \(\Omega =\mathbb {R}^N\) in (2.4), we have

$$\begin{aligned} \int _{\mathbb {R}^N}\Big ((x-y_{\varepsilon ,1})\cdot \nabla K(x)\Big ) u^{2^*}_\varepsilon {d}x =0. \end{aligned}$$
(B.1)

On the other hand, it follows from Proposition 2.1

$$\begin{aligned} \int _{\mathbb {R}^N}\Big ((x-y_{\varepsilon ,1})\cdot \nabla K(x)\Big ) u^{2^*}_\varepsilon {d}x =\int _{B_{2d}(y_{\varepsilon ,1})}\Big ((x-y_{\varepsilon ,1})\cdot \nabla K(x)\Big ) u^{2^*}_\varepsilon {d}x +O\Big (\frac{1}{\lambda _{\varepsilon ,1}^N}\Big ), \nonumber \\ \end{aligned}$$
(B.2)

and we can compute like (3.17) that

$$\begin{aligned}{} & {} \int _{B_{2d}(y_{\varepsilon ,1})}\Big ((x-y_{\varepsilon ,1})\cdot \nabla K(x)\Big ) u^{2^*}_\varepsilon {d}x \nonumber \\{} & {} \quad = \int _{B_{2d}(y_{\varepsilon ,1})}\Big ((x-y_{\varepsilon ,1})\cdot \nabla K(x)\Big ) \overline{U}^{2^*}_{y_{\varepsilon ,1},\lambda _{\varepsilon ,1}}dx +O\Big (\int _{B_{2d}(y_{\varepsilon ,1})}\big |x-y_{\varepsilon ,1}\big | \big ( \overline{U}^{2^*-1}_{y_{\varepsilon ,1}, \lambda _{\varepsilon ,1}}v_\varepsilon +v_\varepsilon ^{2^*}\big ) {d}x\Big )\nonumber \\{} & {} \quad = \frac{\Delta K(y_{\varepsilon ,1})}{N} \int _{B_{2d}(y_{\varepsilon ,1})} \big |x-y_{\varepsilon ,1}\big |^2 {U}^{2^*}_{y_{\varepsilon ,1},\lambda _{\varepsilon ,1}} {d}x +O\Big (\frac{\varepsilon }{\lambda _{\varepsilon ,1}^2}\Big ) +O\Big (\frac{1}{\lambda _{\varepsilon ,1}^3}\Big ) +O\Big (\frac{\Vert v_\varepsilon \Vert +\Vert v_\varepsilon \Vert ^{2^*}}{\lambda _{\varepsilon ,1}} \Big ) \nonumber \\{} & {} \quad = \frac{NB}{\lambda _{\varepsilon ,1}^2}\Big ( \Delta K(y_{\varepsilon ,1})+o(1)\Big ), \end{aligned}$$
(B.3)

where \(B=\frac{C_N^{2^*}}{N^2}\displaystyle \int _{\mathbb {R}^N}\frac{|x|^2}{(1+|x|^2)^{N}}dx\). Then, combining (B.2) and (B.3), we have

$$\begin{aligned} \begin{aligned} \int _{\mathbb {R}^N}&\Big ((x-y_{\varepsilon ,1})\cdot \nabla K(x)\Big ) u^{2^*}_\varepsilon {d}x = \frac{NB}{\lambda _{\varepsilon ,1}^2}\Big ( \Delta K(y_{\varepsilon ,1})+o(1)\Big ), \end{aligned} \end{aligned}$$
(B.4)

Hence, (B.1) and (B.4) imply

$$\begin{aligned} \Delta K(b_1)=0, \end{aligned}$$

which contradicts the condition (K). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, P., Peng, S. & Zhou, Y. On the prescribed scalar curvature problem with very degenerate prescribed functions. Calc. Var. 62, 79 (2023). https://doi.org/10.1007/s00526-022-02409-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02409-y

Mathematics Subject Classification

Navigation