Skip to main content
Log in

Reducibility of quantum harmonic oscillator on \(\mathbb {R}^d\) perturbed by a quasi: periodic potential with logarithmic decay

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We prove the reducibility of quantum harmonic oscillators in \({\mathbb {R}}^d\) perturbed by a quasi-periodic in time potential \(V(x,\omega t)\) with \(\textit{logarithmic decay}\). By a new estimate built for solving the homological equation we improve the reducibility result by Grébert-Paturel(Annales de la Faculté des sciences de Toulouse : Mathématiques. \(\mathbf{28} \), 2019).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baldi, P., Berti, M., Montalto, R.: KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation. Math. Ann. 359, 471–536 (2014)

    Article  MathSciNet  Google Scholar 

  2. Baldi, P., Montalto, R.: Quasi - periodic incompressible Euler flows in 3D. Adv. Math. 384, 107730 (2021)

    Article  MathSciNet  Google Scholar 

  3. Bambusi, D.: Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations. II. Commun. Math. Phys. 353, 353–378 (2017)

    Article  Google Scholar 

  4. Bambusi, D.: Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations. I. Trans. Amer. Math. Soc. 370, 1823–1865 (2018)

    Article  MathSciNet  Google Scholar 

  5. Bambusi, D., Langella, D., Montalto, R.: Reducibility of non-resonant transport equation on with unbounded perturbations. Ann. Henri Poincaré 20, 1893–1929 (2019)

    Article  MathSciNet  Google Scholar 

  6. Bambusi, D., Langella, D., Montalto, R.: Growth of Sobolev norms for unbounded perturbations of the Laplacian on flat tori. arXiv:2012.02654

  7. Bambusi, D., Graffi, S.: Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods. Commun. Math. Phys. 219, 465–480 (2001)

    Article  Google Scholar 

  8. Bambusi, D., Grébert, B., Maspero, A., Robert, D.: Growth of Sobolev norms for abstract linear Schrödinger equations. J. Eur. Math. Soc. 23, 557–583 (2021)

    Article  MathSciNet  Google Scholar 

  9. Bambusi, D., Grébert, B., Maspero, A., Robert, D.: Reducibility of the quantum harmonic oscillator in \(d\)-dimensions with polynomial time-dependent perturbation. Anal. & PDE 11, 775–799 (2018)

    Article  MathSciNet  Google Scholar 

  10. Berti, M., Maspero, A.: Long time dynamics of Schrödinger and wave equations on flat tori. J. Differ. Equ. 267(2), 1167–1200 (2019)

    Article  Google Scholar 

  11. Berti, M., Montalto, R.: Quasi-periodic standing wave solutions for gravity-capillary water waves. Memoirs of the American Mathematical Society, Volume 263, Number 1273, 2020

  12. Bourgain, J.: Growth of Sobolev norms in linear Schrödinger equations with smooth time dependent potentials. J. Anal. Math. 77, 315–348 (1999)

    Article  MathSciNet  Google Scholar 

  13. Bourgain, J.: Growth of Sobolev norms in linear Schrödinger equations with quasi-periodic potential. Commun. Math. Phys. 204(1), 207–247 (1999)

    Article  Google Scholar 

  14. Corsi, L., Montalto, R.: Quasi-periodic solutions for the forced Kirchhoff equation on \({\mathbb{T}}^d\). Nonlinearity 31, 5075–5109 (2018)

    Article  MathSciNet  Google Scholar 

  15. Combescure, M.: The quantum stability problem for time-periodic perturbations of the harmonic oscillator. Ann. Inst. H. Poincaré Phys. Théor. 47(1), 63-83 (1987); Erratum: Ann. Inst. H. Poincaré Phys. Théor. 47(4), 451-454 (1987)

  16. Delort, J.-M.: Growth of Sobolev norms for solutions of time dependent Schrödinger operators with harmonic oscillator potential. Commun. PDE 39, 1–33 (2014)

    Article  Google Scholar 

  17. Delort, J.-M., Szeftel, J.: Long-time existence for small data nonlinear Klein - Gordon equations on tori and spheres. Int. Math. Res. Not. 37, 1897–1966 (2004)

    Article  MathSciNet  Google Scholar 

  18. Eliasson, L.H.: Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation. Commun. Math. Phys. 146, 447–482 (1992)

    Article  Google Scholar 

  19. Eliasson, H.L., Kuksin, S.B.: On reducibility of Schrödinger equations with quasiperiodic in time potentials. Commun. Math. Phys. 286, 125–135 (2009)

    Article  Google Scholar 

  20. Fang, D., Zhang, Q.: On growth of Sobolev norms in linear Schrödinger equations with time dependent Gevrey potentials. J. Dynam. Differ. Equ. 24(2), 151–180 (2012)

    Article  Google Scholar 

  21. Faou, E., Raphaël, P.: On weakly turbulent solutions to the perturbed linear harmonic oscillator. arXiv:2006.08206 (2020)

  22. Feola, R., Giuliani, F., Montalto, R., Procesi, M.: Reducibility of first order linear operators on tori via Moser’s theorem. J. Funct. Anal. 276(3), 932–970 (2019)

    Article  MathSciNet  Google Scholar 

  23. Feola, R., Grébert, B.: Reducibility of Schrödinger equation on the sphere. Int. Math. Res. Not. 0, 1-39 (2020)

  24. Feola, R., Grébert, B., Nguyen, T.: Reducibility of Schrödinger equation on a Zoll manifold with unbounded potential. J. Math. Phys. 61(7), 071501 (2020)

    Article  MathSciNet  Google Scholar 

  25. Feola, R., Procesi, M.: Quasi-periodic solutions for fully nonlinear forced reversible Schrödinger equations. J. Differ. Equ. 259, 3389–3447 (2015)

    Article  Google Scholar 

  26. Graffi, S., Yajima, K.: Absolute continuity of the Floquet spectrum for a nonlinearly forced harmonic oscillator. Commun. Math. Phys. 215(2), 245–250 (2000)

    Article  MathSciNet  Google Scholar 

  27. Grébert, B., Paturel, E.: KAM for the Klein Gordon equation on \({\mathbb{S}}^d\). Boll. Unione Mat. Ital. 9, 237–288 (2016)

    Article  MathSciNet  Google Scholar 

  28. Grébert, B., Paturel, E.: On reducibility of quantum harmonic oscillator on \({\mathbb{R}}^d\) with quasiperiodic in time potential. Annales de la Faculté des sciences de Toulouse : Mathématiques 28, 977–1014 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Grébert, B., Thomann, L.: KAM for the quantum harmonic oscillator. Commun. Math. Phys. 307, 383–427 (2011)

    Article  MathSciNet  Google Scholar 

  30. Koch, H., Tataru, D.: \(L^p\) eigenfunction bounds for the Hermite operator. Duke Math. J. 128, 369–392 (2005)

    Article  MathSciNet  Google Scholar 

  31. Liang, Z., Luo, J.: Reducibility of 1-d quantum harmonic oscillator equation with unbounded oscillation perturbations. J. Differ. Equ. 270, 343–389 (2021)

    Article  MathSciNet  Google Scholar 

  32. Liang, Z., Wang, Z.: Reducibility of quantum harmonic oscillator on \({\mathbb{R}}^d\) with differential and quasi-periodic in time potential. J. Differ. Equ. 267, 3355–3395 (2019)

    Article  Google Scholar 

  33. Liang, Z., Wang, Z.Q.: Reducibility of 1-d Schrödinger equation with unbounded oscillation perturbations. Accepted by Israel Journal of Mathematics. arXiv:2003.13022v3 (2020)

  34. Liang, Z., Zhao, Z., Zhou, Q.: 1-d quasi-periodic quantum harmonic oscillator with quadratic time-dependent perturbations: Reducibility and growth of Sobolev norms. J. Math. Pures Appl. 146, 158–182 (2021)

    Article  MathSciNet  Google Scholar 

  35. Liu, J., Yuan, X.: Spectrum for quantum duffing oscillator and small-divisor equation with large-variable coefficient. Commun. Pure Appl. Math. 63, 1145–1172 (2010)

    MathSciNet  MATH  Google Scholar 

  36. Luo, J., Liang, Z., Zhao, Z.: Growth of Sobolev norms in 1-d quantum harmonic oscillator with polynomial time quasi-periodic perturbation. Commun. Math. Phys. 392, 1–23 (2022)

    Article  MathSciNet  Google Scholar 

  37. Maspero, A.: Lower bounds on the growth of Sobolev norms in some linear time dependent Schrödinger equations. Math. Res. Lett. 26, 1197–1215 (2019)

    Article  MathSciNet  Google Scholar 

  38. Maspero, A., Robert, D.: On time dependent Schrödinger equations: Global well-posedness and growth of Sobolev norms. J. Func. Anal. 273(2), 721–781 (2017)

    Article  Google Scholar 

  39. Montalto, R.: KAM for quasi-linear and fully nonlinear perturbations of Airy and KdV equations. Phd Thesis, SISSA - ISAS, 2014

  40. Montalto, R.: A reducibility result for a class of linear wave equations on \({\mathbb{T}}^d\). Int. Math. Res. Not. 2019(6), 1788–1862 (2019)

    Article  Google Scholar 

  41. Plotnikov, P.I., Toland, J.F.: Nash-Moser theory for standing water waves. Arch. Rational Mech. Anal. 159, 1–83 (2001)

    Article  MathSciNet  Google Scholar 

  42. Schwinte, V., Thomann, L.: Growth of Sobolev norms for coupled Lowest Landau Level equations. Pure Appl. Anal. 3, 189–222 (2021)

    Article  MathSciNet  Google Scholar 

  43. Thomann, L.: Growth of Sobolev norms for linear Schrödinger operators. Ann. H. Lebesgue 4, 1595–1618 (2021)

    Article  MathSciNet  Google Scholar 

  44. Wang, Z., Liang, Z.: Reducibility of 1D quantum harmonic oscillator perturbed by a quasiperiodic potential with logarithmic decay. Nonlinearity 30, 1405–1448 (2017)

    Article  MathSciNet  Google Scholar 

  45. Wang, W.-M.: Pure point spectrum of the Floquet Hamiltonian for the quantum harmonic oscillator under time quasi-periodic perturbations. Commun. Math. Phys. 277, 459–496 (2008)

    Article  MathSciNet  Google Scholar 

  46. Wang, W.-M.: Logarithmic bounds on Sobolev norms for time dependent linear Schrödinger equations. Commun. PDE 33(12), 2164–2179 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their invaluable suggestions. They were partially supported by NSFC grant (12071083) and Natural Science Foundation of Shanghai (19ZR1402400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenguo Liang.

Additional information

Communicated by A. Malchiodi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Lemma 2.1

Recall that \(\beta >\frac{1}{2}\).

  1. (i).

    Since \(A\in {\mathcal {M}}_\beta ,B\in {\mathcal {M}}_\beta ^+\), then for any \(a,b\in \widehat{{\mathcal {E}}}\)

    $$\begin{aligned} \Vert (AB)_{[a]}^{[b]}\Vert&\le \sum _{c\in \widehat{{\mathcal {E}}}}\Vert A_{[a]}^{[c]}B_{[c]}^{[b]}\Vert \le \sum _{c\in \widehat{{\mathcal {E}}}}\Vert A_{[a]}^{[c]}\Vert \cdot \Vert B_{[c]}^{[b]}\Vert \\&\le \sum _{c\in \widehat{{\mathcal {E}}}}\frac{|A|_\beta }{\left( 1+\ln w_a\right) ^\beta \left( 1+\ln w_c\right) ^\beta }\cdot \frac{|B|_{\beta +}}{\left( 1+\ln w_c\right) ^\beta \left( 1+\ln w_b\right) ^\beta (1+|w_b-w_c|)}\\&\le \frac{|A|_\beta |B|_{\beta +}}{\left( 1+\ln w_a\right) ^\beta \left( 1+\ln w_b\right) ^\beta } \sum _{c\in \widehat{{\mathcal {E}}}}\frac{1}{\left( 1+\ln w_c\right) ^\beta (1+|w_b-w_c|)}\\&\le \frac{C|A|_\beta |B|_{\beta +}}{\left( 1+\ln w_a\right) ^\beta \left( 1+\ln w_b\right) ^\beta }\qquad \underline{\text { by Lemma}~5.1\text { and }2\beta >1. } \end{aligned}$$

    If follow that \(|AB|_\beta \le C|A|_\beta |B|_{\beta +}\). Similarly, we have \(|BA|_\beta \le C|A|_\beta |B|_{\beta +}\).

  2. (ii).

    Since \(A,B\in {\mathcal {M}}_\beta ^+\), then for any \(a,b\in \widehat{{\mathcal {E}}}\)

    $$\begin{aligned} \Vert (AB)_{[a]}^{[b]}\Vert&\le \sum _{c\in \widehat{{\mathcal {E}}}}\Vert A_{[a]}^{[c]}B_{[c]}^{[b]}\Vert \le \sum _{c\in \widehat{{\mathcal {E}}}}\Vert A_{[a]}^{[c]}\Vert \cdot \Vert B_{[c]}^{[b]}\Vert \\&\le \sum _{c\in \widehat{{\mathcal {E}}}}\frac{|A|_{\beta +}|B|_{\beta +}}{\left( 1+\ln w_a\right) ^\beta \left( 1+\ln w_b\right) ^\beta \left( 1+\ln w_c\right) ^{2\beta }(1+|w_a-w_c|) (1+|w_b-w_c|)}\\&\le \left( \sum _{\begin{array}{c} c\in \widehat{{\mathcal {E}}}\\ |w_a-w_c|\ge \frac{1}{2}|w_a-w_b| \end{array}}+\sum _{\begin{array}{c} c\in \widehat{{\mathcal {E}}}\\ |w_b-w_c|\ge \frac{1}{2}|w_a-w_b| \end{array}}\right) \\&\le \frac{2|A|_{\beta +}|B|_{\beta +}}{\left( 1+\ln w_a\right) ^\beta \left( 1+\ln w_b\right) ^\beta (1+|w_a-w_b|)}\\&\quad \times \left( \sum _{c\in \widehat{{\mathcal {E}}}}\frac{1}{\left( 1+\ln w_c\right) ^{2\beta }(1+|w_b-w_c|)}+\sum _{c\in \widehat{{\mathcal {E}}}}\frac{1}{\left( 1+\ln w_c\right) ^{2\beta }(1+|w_a-w_c|)}\right) \\&\le \frac{C|A|_{\beta +}|B|_{\beta +}}{\left( 1+\ln w_a\right) ^\beta \left( 1+\ln w_b\right) ^\beta (1+|w_a-w_b|)}\qquad \underline{\text { by Lemma}~5.1\text { and }2\beta >1.} \end{aligned}$$

    This leads to that \(|AB|_{\beta +}\le C|A|_{\beta +}|B|_{\beta +}\).

  3. (iii).

    Use assertion (ii) of Lemma 2.1.

  4. (iv).

    Let \(A\in {\mathcal {M}}_\beta \) and \(s\ge 1\). Then for any \(\xi \in \ell _s^2\), we have

    $$\begin{aligned} \Vert A\xi \Vert _{-s}^2&=\sum _{a\in \widehat{{\mathcal {E}}}}w_a^{-s}\Vert \sum _{b\in \widehat{{\mathcal {E}}}}A_{[a]}^{[b]}\xi _{[b]}\Vert ^2 \le \sum _{a\in \widehat{{\mathcal {E}}}} w_a^{-s} \left( \sum _{b\in \widehat{{\mathcal {E}}}}\Vert A_{[a]}^{[b]}\Vert \cdot \Vert \xi _{[b]}\Vert \right) ^2\\&\le |A|_\beta ^2\sum _{a\in \widehat{{\mathcal {E}}}}w_a^{-s}\left( \sum _{b\in \widehat{{\mathcal {E}}}}\frac{w_b^{s/2}\Vert \xi _{[b]}\Vert }{(1+\ln w_a)^\beta (1+\ln w_b)^\beta w_b^{s/2}}\right) ^2\\&\le |A|_\beta ^2\sum _{a\in \widehat{{\mathcal {E}}}}\frac{1}{(1+\ln w_a)^{2\beta }w_a^s}\left( \sum _{b\in \widehat{{\mathcal {E}}}}\frac{1}{(1+\ln w_b)^{2\beta }w_b^s}\right) \left( \sum _{b\in \widehat{{\mathcal {E}}}}w_b^s\Vert \xi _{[b]}\Vert ^2\right) \\&\le |A|_\beta ^2\sum _{a\in \widehat{{\mathcal {E}}}}\frac{1}{(1+\ln w_a)^{2\beta }w_a}\left( \sum _{b\in \widehat{{\mathcal {E}}}}\frac{1}{(1+\ln w_b)^{2\beta }w_b}\right) \Vert \xi \Vert _s^2\\&\le C^2|A|_\beta ^2\Vert \xi \Vert _s^2. \end{aligned}$$
  5. (v).

    Case 1: \(s\in [0,1]\). In this case we first prove

    $$\begin{aligned} (I):=\sum _{b\in \widehat{{\mathcal {E}}}}\frac{(w_a/w_b)^s}{(1+\ln w_b)^{2\beta }(1+|w_a-w_b|)}\le C, \quad \forall \,s\in [0,1]\text { and }\beta >\frac{1}{2}. \end{aligned}$$
    (5.1)

    We split the series above into two parts as follows:

    $$\begin{aligned} (I)=\left( \sum _{w_b>\frac{w_a}{2}}+\sum _{w_b\le \frac{wa}{2}}\right) \frac{(w_a/w_b)^s}{(1+\ln w_b)^{2\beta }(1+|w_a-w_b|)}:=(I_1)+(I_2). \end{aligned}$$

    For the former, \((w_a/w_b)^s\le 2^s\le 2\). Thus

    $$\begin{aligned} (I_1)\le \sum _{b\in \widehat{{\mathcal {E}}}}\frac{2}{(1+\ln w_b)^{2\beta }(1+|w_a-w_b|)}\le C. \end{aligned}$$
    (5.2)

    Then turn to the latter. Since \(w_b\le \frac{w_a}{2}\), then \(1+|w_a-w_b|\ge w_a-w_b\ge \frac{w_a}{2}\ge w_b\). Thus \( 1+|w_a-w_b|=(1+|w_a-w_b|)^s(1+|w_a-w_b|)^{1-s}\ge (w_a/2)^sw_b^{1-s}\ge \frac{1}{2}w_a^sw_b^{1-s}. \) Therefore, one obtains \( (I_2)\le \sum _{b\in \widehat{{\mathcal {E}}}}\frac{2}{(1+\ln w_b)^{2\beta }w_b}\le C. \) Collecting the last estimate and (5.2) leads to the results (5.1).

    Now, we prepare to prove the assertion of (v) when \(s\in [0,1]\). Since \(A\in {\mathcal {M}}_\beta ^+\), then for any \(\xi \in \ell _s^2\),

    $$\begin{aligned} \Vert A\xi \Vert _s^2&\le \sum _{a\in \widehat{{\mathcal {E}}}}w_a^s\left( \sum _{b\in \widehat{{\mathcal {E}}}}\Vert A_{[a]}^{[b]}\Vert \cdot \Vert \xi _{[b]}\Vert \right) ^2\\&\le \sum _{a\in \widehat{{\mathcal {E}}}}\frac{|A|_{\beta +}^2}{(1+\ln w_a)^{2\beta }}\left( \sum _{b\in \widehat{{\mathcal {E}}}}\frac{(w_a/w_b)^{s/2}}{(1+\ln w_b)^\beta (1+|w_a-w_b|)^{1/2}}\frac{w_b^{s/2}\Vert \xi _{[b]}\Vert }{(1+|w_a-w_b|)^{1/2}}\right) ^2\\&\le \sum _{a\in \widehat{{\mathcal {E}}}}\frac{|A|_{\beta +}^2}{(1+\ln w_a)^{2\beta }}\left( \sum _{b\in \widehat{{\mathcal {E}}}}\frac{(w_a/w_b)^s}{(1+\ln w_b)^{2\beta }(1+|w_a-w_b|)}\right) \left( \sum _{b\in \widehat{{\mathcal {E}}}}\frac{w_b^s\Vert \xi _{[b]}\Vert ^2}{1+|w_a-w_b|}\right) \\&\le C|A|_{\beta +}^2\sum _{b\in \widehat{{\mathcal {E}}}}w_b^s\Vert \xi _{[b]}\Vert ^2\sum _{a\in \widehat{{\mathcal {E}}}}\frac{1}{(1+\ln w_a)^{2\beta }(1+|w_a-w_b|)}\quad \underline{~\text {by }(5.1)~}\\&\le C^2|A|_{\beta +}^2\Vert \xi \Vert _{s}^2. \quad \underline{\text { by Lemma}~5.1 ~} \end{aligned}$$

    Next turn to the other case: \(s\in [-1,0)\). Repeating similar procedures as the first case and noting that

    $$\begin{aligned} \sum _{a\in \widehat{{\mathcal {E}}}}\frac{(w_a/w_b)^s}{(1+\ln w_a)^{2\beta }(1+|w_a-w_b|)}\le C,\quad \forall \,s\in [-1,0)\text { and }\beta >\frac{1}{2}, \end{aligned}$$

    we complete the proof. \(\square \)

1.2 Some auxiliary lemmas

Lemma 5.1

(see Lemma A1 in [44]) For \(j\ge 1\) and \(\delta >1\), there exists a positive constant \(C\equiv C(\delta )\) independent of j such that \( \sum _{l\ge 1}\frac{1}{(1+\ln l)^\delta (1+|l-j|)}\le C. \)

The following lemma is classical.

Lemma 5.2

Let \(f:[0,1]\mapsto {\mathbb {R}}\) be a \({\mathcal {C}}^1\) map satisfying \(|f'(x)|\ge \delta \) for all \(x\in [0,1]\) and let \(\kappa >0\) then \( \text {Meas}\big (\{x\in [0,1]:|f(x)|\le \kappa \}\big )\le \frac{2\kappa }{\delta }. \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Z., Wang, Z. Reducibility of quantum harmonic oscillator on \(\mathbb {R}^d\) perturbed by a quasi: periodic potential with logarithmic decay. Calc. Var. 61, 155 (2022). https://doi.org/10.1007/s00526-022-02267-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02267-8

Mathematics Subject Classification

Navigation