Skip to main content
Log in

Multi-bubbling condensates for the Maxwell-Chern-Simons model

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider the elliptic system problems arising from the Maxwell-Chern-Simons model. In this system, there are two important parameters related to Chern-Simons mass scale and electric charge. Under almost optimal conditions on these two parameters, we show the existence of nontopological condensates with magnetic field concentrated at multi-bubbling points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrikosov, A.A.: On the magnetic properties of superconductors of the second group. Sov. Phys. JETP 5, 1174–1182 (1957)

    Google Scholar 

  2. Abrikosov, A.A.: Theory of high-Tc superconducting cuprates based on experimental evidence. Phys. C Supercond. 341–348(1), 97–102 (2000)

    Article  Google Scholar 

  3. Autler, S.H.: Fluxoid pinning in superconductors by a periodic array of magnetic particles. J. Low Temperat. Phys. 9, 241–253 (1972)

    Article  Google Scholar 

  4. Ao, W., Kwon, O., Lee, Y.: Periodic Maxwell-Chern-Simons vortices with concentrating property, preprint

  5. Bartolucci, D., Chen, C.-C., Lin, C.-S., Tarantello, G.: Profile of blow-up solutions to mean field equations with singular data. Comm. Part. Differ. Equ. 29, 1241–1265 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bartolucci, D., Jevnikar, A., Lee, Y., Yang, W.: Uniqueness of bubbling solutions of mean field equations. J. Math. Pures Appl. 123, 78–126 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bartolucci, D., Tarantello, G.: Liouville type equations with singular data and their applications to periodic multivortices for the electroweak theory. Comm. Math. Phys. 229, 3–47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bednorz, J.K., Muller, K.A.: Possible high Tc superconductivity in the Ba-La-Cu-O system. Zeitschrift fur Phys. B Condens. Matter 64, 189–193 (1986)

    Article  Google Scholar 

  9. Bethuel, F., Brezis, H., Helein, F.: Asymptotics for the minimization of a Ginzburg-Landau functional. Calc. Var. Part. Differ. Equ. 1, 123–148 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bethuel, F., Brezis, H., Helein, F.: Ginzburg-Landau Vortices. Birkhauser, Boston (1994)

    Book  MATH  Google Scholar 

  11. Bethuel, F., Riviere, T.: Vortices for a variational problem related to superconductivity. Ann. Inst. H. Poincaré Anal. Non Linéaire 12, 243–303 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bogomol’nyi, E.: The stability of classical solutions. Sov. J. Nucl. Phys. 24, 449–454 (1976)

    MathSciNet  Google Scholar 

  13. Boutet de Monvel-Berthier, A., Georgescu, V., Purice, R.: A boundary value problem related to the Ginzburg-Landau model. Comm. Math. Phys. 142, 1–23 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Brezis, H., Merle, F.: Uniform estimates and blow-up behavior for solutions of \(-\Delta u=V(x).e^u\) in two dimensions. Comm. Part. Differ. Equ. 16, 1223–1253 (1991)

    Article  MATH  Google Scholar 

  15. Caffarelli, L.A., Yang, Y.: Vortex condensation in Chern-Simons-Higgs model: an existence theorem. Comm. Math. Phys. 168, 321–336 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chae, D., Chae, M.: The global existence in the Cauchy problem of the Maxwell-Chern- Simons-Higgs system. J. Math. Phys. 43, 5470–5482 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chae, D., Choe, K.: Global existence in the Cauchy problem of the relativistic Chern-Simons-Higgs theory. Nonlinearity 15, 747–758 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chae, D., Kim, N.: Topological multivortex solutions of the self-dual Maxwell-Chern-Simons-Higgs system. J. Differ. Equ. 134, 154–182 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chae, D., Kim, N.: Vortex condensates in the relativistic self-dual Maxwell-Chern-Simons-Higgs system, RIM-GARC preprint 97-50, Seoul National University

  20. Chae, D., Imanuvilov, Y.: The existence of non-topological multivortex solutions in the relativistic self-dual Chern-Simons theory. Comm. Math. Phys. 215, 119–142 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chae, D., Imanuvilov, Y.: Non-topological multivortex solutions to the self-dual Maxwell-Chern-Simons-Higgs systems. J. Funct. Anal. 196(1), 87–118 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chan, H., Fu, C.C., Lin, C.S.: Non-topological multi-vortex solutions to the self-dual Chern-Simons-Higgs equation. Comm. Math. Phys. 231, 189–221 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chang, S.Y.A., Chen, C.C., Lin, C.S.: Extremal functions for a mean field equation in two dimension, in: Lecture on Partial Differential Equations, New Stud. Adv. Math. 2 Int. Press, Somerville, MA, 61-93 (2003)

  24. Chen, C.C., Lin, C.S.: Sharp estimates for solutions of multi-bubbles in compact Riemann surface. Comm. Pure Appl. Math 55, 728–771 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chen, W., Li, C.: Qualitative properties of solutions to some nonlinear elliptic equations in \(\mathbb{R}^2\). Duke Math. J. 71, 427–439 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen, X., Hastings, S., McLeod, J.B., Yang, Y.: A nonlinear elliptic equation arising from gauge field theory and cosmology. Proc. Roy. Soc. Lond. A 446, 453–478 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Choe, K.: Existence of multivortex solutions in the self-dual-Higgs theory in a background metric. J. Math. Phys. 42, 5150–5162 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Choe, K.: Uniqueness of the topological multivortex solution in the selfdual Chern-Simons theory. J. Math. Phys. 46, 01230521 (2005)

    Article  Google Scholar 

  29. Choe, K.: Asymptotic behavior of condensate solutions in the Chern-Simons-Higgs theory. J. Math. Phy. 48, 103501 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Choe, K., Kim, N.: Blow-up solutions of the self-dual Chern-Simons-Higgs vortex equation. Ann. Inst. H. Poincaré Anal. Non Linaire 25, 313–338 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Choe, K., Kim, N., Lin, C.S (2011) Existence of self-dual non-topological solutions in the Chren-Simons-Higgs model. Ann. Inst. H. P. 28: 837–852

  32. del Pino, M., Esposito, P., Figueroa, P., Musso, M.: Nontopological condensates for the self-dual Chern-Simons-Higgs model. Comm. Pure Appl. Math. 68(7), 1191–1283 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ding, W., Jost, J., Li, J., Wang, G.: An analysis of the two-vortex case in the Chern-Simons Higgs model. Calc. Var. Partial Differ. Equ. 7, 87–97 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ding, W., Jost, J., Li, J., Wang, G.: Multiplicity results for the two-sphere Chern-Simons Higgs model on the two-sphere. Comment. Math. Helv. 74, 118–142 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ding, W., Jost, J., Li, J., Peng, X., Wang, G.: Self-duality equations for Ginzburg-Landau and Seiberg-Witten type functionals with 6th order potentials. Comm. Math. Phys. 217, 383–407 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. Douglass, D.H., Jr.: Properties of a Thin Hollow Superconducting Cylinder. Phys. Rev. 132, 513 (1963)

    Article  MATH  Google Scholar 

  37. Dunne, G.: Self-dual Chern-Simons theories. Lecture Notes in Physics, New series m, Monographs, m36. Springer, New York, (1995)

  38. Fan, Y.W., Lee, Y., Lin, C.S.: Mixed type solutions of the \(SU(3).\) models on a torus. Comm. Math. Phys. 343(1), 233–271 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Han, J.: Existence of topological multivortex solutions in the self-dual gauge theories. Proc. Roy. Soc. Edinburgh Sect. A 130, 1293–1309 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  40. Han, J.: Asymptotics for the vortex condensate solutions in Chern-Simons-Higgs theory. Asymptotic Anal. 28, 31–48 (2001)

    MathSciNet  MATH  Google Scholar 

  41. Han, J.: Asymptotic limit for condensate solutions in the Abelian Chern-Simons Higgs model. Proc. Amer. Math. Soc. 131, 1839–1845 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  42. Han, J.: Asymptotic limit for condensate solutions in the Abelian Chern-Simons Higgs model II. Proc. Amer. Math. Soc. 131, 3827–3832 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  43. Han, J.: Topological solutions in the self-dual Chern-Simons-Higgs theory in a background metric. Lett. Math. Phys. 65, 37–47 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  44. Han, J., Kim, N.: Nonself-dual Chern-Simons and Maxwell-Chern-Simons vortices on bounded domains. J. Funct. Anal. 221(1), 167–204 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  45. Han, J., Jang, J.: Self-dual Chern-Simons vortices on bounded domains. Lett. Math. Phys. 64, 45–56 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  46. Hong, J., Kim, Y., Pac, P.Y.: Multivortex Solutions of the Abelian Chern-Simons-Higgs Theory. Phys. Rev. Lett. 64, 2230–2233 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  47. Jackiw, R., Weinberg, E.J.: Self-dual Chen-Simons vortices. Phys. Rev. Lett. 64, 2234–2237 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  48. Jaffe, A., Taubes, C.H.: Vortices and Monopoles. Birkhauser, Boston (1980)

    MATH  Google Scholar 

  49. Kim, S.: Solitons of the self-dual Chern-Simons theory on a cylinder. Lett. Math. Phys. 61, 113–122 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  50. Kim, S., Kim, Y.: Self-dual Chern-Simons vortices on Riemann surfaces, J. Math. Phys. 43, 2355-2362 (2002).Fno

  51. Kurata, K.: Existence of nontopological solutions for a nonlinear elliptic equation from Chern-Simons-Higgs theory in a general background metric. Differ. Int. Equ. 14, 925–935 (2001)

    MATH  Google Scholar 

  52. Landau, L., Lifschitz, E.: The classical theory of fields. Addison-Wesley, Cambridge MA (1951)

    Google Scholar 

  53. Lee, C., Lee, K., Min, H.: Self-dual Maxwell-Chern-Simons solitons. Phys. Lett. B 252, 79–83 (1990)

    Article  MathSciNet  Google Scholar 

  54. Lee, Y.: Bubbling mixed type solutions of the \(SU(3)\) models on a torus, J. Math. Phys. 58, 111508, 16 pp., (2017)

  55. Lin, C.S., Yan, S.: Bubbling solutions for relativistic abelian Chern-Simons model on a torus. Comm. Math. Phys. 297, 733–758 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  56. Lin, C.S., Yan, S.: Bubbling solutions for the \(SU(3)\) Chern-Simons Model on a torus. Comm. Pure Appl. Math. 66, 991–1027 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  57. Lin, C.S., Yan, S.: Existence of bubbling solutions for Chern-Simons model on a torus. Arch. Ration. Mech. Anal. 207, 353–392 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  58. Nielsen, H., Olesen, P.: Vortex-Line models for dual strings. Nucl. Phys. B 61, 45–61 (1973)

    Article  Google Scholar 

  59. Nolasco, M., Tarantello, G.: On a sharp type inequality on two dimensional compact manifolds. Arch. Rational Mech. Anal. 145, 161–195 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  60. Nolasco, M., Tarantello, G.: Double vortex condensates in the Chern-Simons-Higgs theory. Calc. Var. Partial Differ. Equ. 9, 31–94 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  61. Oikawa, Noriko, Hidaka, Yoshiki, Kai, Shoichi: Formation of a defect lattice in electroconvection of nematics. Phys. Rev. E 70, 066204 (2004)

    Article  Google Scholar 

  62. Pacard, F., Riviere, T.: Linear and nonlinear aspects of vortices. The Ginzburg-Landau model. Progress in Nonlinear Differential Equations and their Applications 39 Birkhauser Boston, Inc., Boston, MA, (2000)

  63. Ricciardi, T.: Asymptotics for Maxwell-Chern-Simons multivortices. Nonlinear Anal. 50, 1093–1106 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  64. Ricciardi, T., Tarantello, G.: Vortices in the Maxwell-Chern-Simons theory. Comm. Pure Appl. Math. 53, 811–851 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  65. Riviere, T.: Asymptotic analysis for the Ginzburg-Landau equations, Boll. Uni. Mat. Ital. Sez. B Artic. Ric. Mat. (8). 2, 537-575 (1999)

  66. Schiff, J.: Integrability of Chern-Simons-Higgs and Abelian Higgs vortex equations in a background metric. J. Math. Phys. 32, 753–761 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  67. Spruck, J., Yang, Y.: The existence of nontopological solitons in the self-dual Chern-Simons theory. Comm. Math. Phys. 149, 361–376 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  68. Spruck, J., Yang, Y.: Topological solutions in the self-dual Chern-Simons theory. Ann. Inst. H. Poincaré Anal. Non Lineaire 12, 75–97 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  69. Struwe, M., Tarantello, G (1998) On multivortex solutions in Chern-Simons gauge theory. Boll. Uni. Mat. Ital. Sez. B Artic. Ric. Mat. 8(1): 109–121

  70. Tarantello, G.: Multiple condensate solutions for the Chern-Simons-Higgs theory. J. Math. Phys. 37, 3769–3796 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  71. Tarantello, G.: Selfdual Gauge Field Vortices An analytical approach Progress in Nonlinear Differential Equations and their Applications. Birkhauser Boston Inc., Boston (2008)

    Google Scholar 

  72. Tarantello, G.: Selfdual Maxwell-Chern-Simons vortices. Milan J. Math. 72, 29–80 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  73. Taubes, C.H.: Arbitrary N-vortex solutions to the first order Ginzburg-Landau equations. Comm. Math. Phys. 72(3), 277–292 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  74. Hooft, G.T.: A property of electric and magnetic flux in nonabelian gauge theories. Nucl. Phys. B 153, 141–160 (1979)

    Article  Google Scholar 

  75. Wang, R.: The existence of Chern-Simons vortices. Comm. Math. Phys. 137, 587–597 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  76. Wang, S., Yang, Y.: Abrikosov’s vortices in the critical coupling. SIAM J. Math. Anal. 23, 1125–1140 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  77. Yang, Y.: Solitons in field theory and nonlinear analysis. Springer Monograph in Mathematics, Springer, New York (2001)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

W. Ao was supported by NSFC 11801421, 12071357. O. Kwon was supported by Young Researcher Program through the National Research Foundation of Korea (NRF) (No. NRF-2016R1C1B2014942). Y. Lee was supported by the POSCO Science Fellowship of POSCO TJ Park Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngae Lee.

Additional information

Communicated by M. del Pino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ao, W., Kwon, O. & Lee, Y. Multi-bubbling condensates for the Maxwell-Chern-Simons model. Calc. Var. 61, 34 (2022). https://doi.org/10.1007/s00526-021-02143-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02143-x

Keywords

Mathematics Subject Classification

Navigation