Skip to main content
Log in

The Hardy–Schrödinger operator with interior singularity: the remaining cases

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider the remaining unsettled cases in the problem of existence of energy minimizing solutions for the Dirichlet value problem \(L_\gamma u-\lambda u=\frac{u^{2^*(s)-1}}{|x|^s}\) on a smooth bounded domain \(\Omega \) in \({\mathbb {R}}^n\) (\(n\ge 3\)) having the singularity 0 in its interior. Here \(\gamma <\frac{(n-2)^2}{4}\), \(0\le s <2\), \(2^*(s):=\frac{2(n-s)}{n-2}\) and \(0\le \lambda <\lambda _1(L_\gamma )\), the latter being the first eigenvalue of the Hardy–Schrödinger operator \(L_\gamma :=-\Delta -\frac{\gamma }{|x|^2}\). There is a threshold \(\lambda ^*(\gamma , \Omega ) \ge 0\) beyond which the minimal energy is achieved, but below which, it is not. It is well known that \(\lambda ^*(\Omega )=0\) in higher dimensions, for example if \(0\le \gamma \le \frac{(n-2)^2}{4}-1\). Our main objective in this paper is to show that this threshold is strictly positive in “lower dimensions” such as when \( \frac{(n-2)^2}{4}-1<\gamma <\frac{(n-2)^2}{4}\), to identify the critical dimensions (i.e., when the situation changes), and to characterize it in terms of \(\Omega \) and \(\gamma \). If either \(s>0\) or if \(\gamma > 0\), i.e., in the truly singular case, we show that in low dimensions, a solution is guaranteed by the positivity of the “Hardy-singular internal mass” of \(\Omega \), a notion that we introduce herein. On the other hand, and just like the case when \(\gamma =s=0\) studied by Brezis and Nirenberg (Commun Pure Appl Math 36:437–477, 1983) and completed by Druet (Ann Inst H Poincaré Anal Non Linéaire 19(2):125–142, 2002), \(n=3\) is the critical dimension, and the classical positive mass theorem is sufficient for the merely singular case, that is when \(s=0\), \(\gamma \le 0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aubin, T.: Problèmes isopérimétriques et espaces de Sobolev. J. Differ. Geom. 11(4), 573–598 (1976)

    Article  MATH  Google Scholar 

  2. Berestycki, H., Nirenberg, L., Varadhan, S.R.S.: The principal eigenvalue and maximum principle for second-order elliptic operators in general domains. Commun. Pure Appl. Math. 47(1), 47–92 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brezis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical exponents. Commun. Pure Appl. Math. 36, 437–477 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beckner, W.: On Hardy–Sobolev embedding. arXiv:0907.3932v1 [math.AP] (2009)

  5. Caffarelli, L.A., Gidas, B., Spruck, J.: Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Commun. Pure Appl. Math. 42(3), 271–297 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caffarelli, L., Kohn, R.V., Nirenberg, L.: First order interpolation inequalities with weights. Compos. Math. 53(3), 259–275 (1984)

    MathSciNet  MATH  Google Scholar 

  7. Cao, D., Han, P.: Solutions for semilinear elliptic equations with critical exponents and Hardy potential. J. Differ. Equ. 205(3), 521–537 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cao, D., He, X., Peng, S.: Positive solutions for some singular critical growth nonlinear elliptic equations. Nonlinear Anal. Theory Methods Appl. 60, 589–609 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cao, D., Peng, S.: A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms. J. Differ. Equ. 193, 424–434 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dolbeault, J., Esteban, M.J., Loss, M., Tarantello, G.: On the symmetry of extremals for the Caffarelli–Kohn–Nirenberg inequalities. Adv. Nonlinear Stud. 9(4), 713–726 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Druet, O.: Elliptic equations with critical Sobolev exponents in dimension 3. Ann. Inst. H. Poincaré Anal. Non Linéaire 19(2), 125–142 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Druet, O.: Optimal Sobolev inequalities and extremal functions. The three-dimensional case. Indiana Univ. Math. J. 51(1), 69–88 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Druet, O., Hebey, E., Robert, F.: Blow-up Theory for Elliptic PDEs in Riemannian Geometry, Mathematical Notes 45. Princeton University Press, Princeton, NJ (2004)

    MATH  Google Scholar 

  14. Ghoussoub, N., Robert, F.: The effect of curvature on the best constant in the Hardy–Sobolev inequalities. Geom. Funct. Anal. 16(6), 1201–1245 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ghoussoub, N., Robert, F.: Hardy-singular boundary mass and Sobolev-critical variational problems. Anal. PDE 10(5), 1017–1079 (2017). doi:10.2140/apde.2017.10.1017

    Article  MathSciNet  MATH  Google Scholar 

  16. Ghoussoub, N., Robert, F.: Sobolev inequalities for the Hardy–Schrödinger operator: extremals and critical dimensions. Bull. Math. Sci. 6(1), 89–144 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Han, Q., Lin, F.: Elliptic Partial Differential Equations, Courant Lecture Notes in Mathematics, vol. 1, New York University, Courant Institute of Mathematical Sciences, New York. American Mathematical Society, Providence, RI (1997)

  18. Jannelli, E.: The role played by space dimensions in elliptic critical problems. J. Differ. Equ. 156, 407–426 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kang, D., Peng, S.: Positive solutions for singular critical elliptic problems. Appl. Math. Lett. 17, 411–416 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kang, D., Peng, S.: Solutions for semilinear elliptic problems with critical Sobolev–Hardy exponents and Hardy potential. Appl. Math. Lett. 18(10), 1094–1100 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kang, D., Peng, S.: Sign-changing solutions for elliptic problems with critical Sobolev–Hardy exponents. J. Math. Anal. Appl. 291, 488–499 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Robert, F.: Existence et asymptotiques optimales des fonctions de Green des opérateurs elliptiques d’ordre deux (Existence and optimal asymptotics of the Green’s functions of second-order elliptic operators). Unpublished notes (2010)

  23. Ruiz, D., Willem, M.: Elliptic problems with critical exponents and Hardy potentials. J. Differ. Equ. 190(2), 524–538 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schoen, R.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Differ. Geom. 20(2), 479–495 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  25. Struwe, M.: Variational methods, applications to nonlinear partial differential equations and Hamiltonian systems. In: Ergebnisse der Mathematik und ihrer Grenzgebiete (4th ed). 3. Folge. A Series of Modern Surveys in Mathematics, vol. 34. Springer-Verlag, Berlin (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nassif Ghoussoub.

Additional information

Communicated by C. S. Lin.

This work was carried out while N. Ghoussoub was visiting l’Institut Élie Cartan, Université de Lorraine in May 2015. He was partially supported by a research grant from the Natural Science and Engineering Research Council of Canada (NSERC). The paper was completed while Frédéric Robert was visiting the University of British Columbia in July 2016.

Appendices

Appendix A: Green’s function for \(-\Delta -\gamma |x|^{-2}-h(x)\) on a bounded domain

Theorem 6

Let \(\Omega \) be a smooth bounded domain of \({\mathbb {R}}^n\) such that \(0\in \Omega \) is an interior point. We fix \(\gamma <\frac{(n-2)^2}{4}\). We let \(h\in C^{0,\theta }(\overline{\Omega })\) be such that \(-\Delta -\gamma |x|^{-2}-h\) is coercive. Then there exists \(G: (\Omega {\setminus }\{0\})^2\setminus \{(x,x)/\, x\in \Omega {\setminus }\{0\}\}\rightarrow {\mathbb {R}}\) such that for all \(p\in \Omega {\setminus }\{0\}\),

  1. (i)

    For any \(p\in \Omega {\setminus }\{0\}\), \(G_p:=G(p,\cdot )\in H_{1}^2(\Omega {\setminus } B_\delta (p))\) for all \(\delta >0\), \(G_p\in C^{2,\theta }(\overline{\Omega }{\setminus }\{0,p\})\)

  2. (ii)

    For all \(f\in L^{\frac{2n}{n+2}}(\Omega )\cap L^p_{loc}(\overline{\Omega }-\{0\})\), \(p>n/2\), and all \(\varphi \in H_0^1(\Omega )\) such that

    $$\begin{aligned} -\Delta \varphi -\left( \frac{\gamma }{|x|^2}+h(x)\right) \varphi =f\hbox { in }\Omega ;\quad \varphi _{|\partial \Omega }=0, \end{aligned}$$

    then we have that

    $$\begin{aligned} \varphi (p)=\int _{\Omega }G(p,x)f(x)\,{ dx} \end{aligned}$$
    (127)

    In addition, \(G>0\) is unique and

  3. (iii)

    For all \(p\in \Omega {\setminus }\{0\}\), there exists \(c_0(p)>0\) such that

    $$\begin{aligned} G_p(x)\sim _{x\rightarrow 0} \frac{c_0(p)}{|x|^{\beta _-(\gamma )}}\quad \hbox {and}\quad G_p(x)\sim _{x\rightarrow p}\frac{1}{(n-2)\omega _{n-1}|x-p|^{n-2}} \end{aligned}$$
    (128)
  4. (iv)

    There exists \(c>0\) such that

    $$\begin{aligned} 0< G_p(x)\le c \left( \frac{\max \{|p|,|x|\}}{\min \{|p|,|x|\}}\right) ^{\beta _-(\gamma )}|x-p|^{2-n}\quad \hbox {for}\quad x\in \Omega -\{0,p\}. \end{aligned}$$
    (129)
  5. (v)

    For all \(\omega \Subset \Omega \), there exists \(c(\omega )>0\) such that

    $$\begin{aligned} c(\omega ) \left( \frac{\max \{|p|,|x|\}}{\min \{|p|,|x|\}}\right) ^{\beta _-(\gamma )}|x-p|^{2-n}\le G_p(x)\quad \hbox {for all}~p,x\in \omega {\setminus }\{0\}. \end{aligned}$$
    (130)

Proof

Fix \(\delta _0>0\) such that \(B_{\delta _0}(0)\subset \Omega \). We let \(\eta _\epsilon (x):={\tilde{\eta }}(\epsilon ^{-1}|x|)\) for all \(x\in {\mathbb {R}}^n\) and \(\epsilon >0\), where \({\tilde{\eta }}\in C^\infty ({\mathbb {R}})\) is nondecreasing and such that \({\tilde{\eta }}(t)=0\) for \(t<1\) and \({\tilde{\eta }}(t)=1\) for \(t>1\). Set

$$\begin{aligned} L_\epsilon :=-\Delta -\left( \frac{\gamma \eta _\epsilon }{|x|^2}+h(x)\right) . \end{aligned}$$

It follows from Lemma 1 and the coercivity of \(-\Delta -\left( \gamma |x|^{-2}+h\right) \) that there exists \(\epsilon _0>0\) and \(c>0\) such that such that for all \(\varphi \in H_0^1(\Omega )\) and \(\epsilon \in (0,\epsilon _0)\),

$$\begin{aligned} \int _\Omega \left( |\nabla \varphi |^2-\left( \frac{\gamma \eta _\epsilon }{|x|^2}+h(x)\right) \varphi ^2\right) \, { dx}\ge c\int _\Omega \varphi ^2\,{ dx}. \end{aligned}$$

As a consequence, there exists \(c>0\) such that for all \(\varphi \in H_0^1(\Omega )\) and \(\epsilon \in (0,\epsilon _0)\),

$$\begin{aligned} \int _\Omega \left( |\nabla \varphi |^2-\left( \frac{\gamma \eta _\epsilon }{|x|^2}+h(x)\right) \varphi ^2\right) \, { dx}\ge c\Vert \varphi \Vert _{D^{1,2}}^2. \end{aligned}$$
(131)

Let \(G_\epsilon >0\) be the Green’s function of \(-\Delta -\left( \gamma \eta _\epsilon |x|^{-2}+h\right) \) on \(\Omega \) with Dirichlet boundary condition. The existence follows from the coercivity and the \(C^{0,\theta }\) regularity of the potential for any \(\epsilon >0\).

Step 1: Integral bounds for \(G_\epsilon \). We claim that for all \(\delta >0\) and \(1<q<\frac{n}{n-2}\) and \(\delta '\in (0,\delta )\), there exists \(C(\delta ,q)>0\) and \(C(\delta ,\delta ')>0\) such that

$$\begin{aligned} \Vert G_\epsilon (x,\cdot )\Vert _{L^q(\Omega )}\le C(\delta ,q)\quad \hbox {and}\quad \Vert G_\epsilon (x,\cdot )\Vert _{L^{\frac{2n}{n-2}}(\Omega {\setminus }B_{\delta '}(x))}\le C(\delta ,\delta ') \end{aligned}$$
(132)

for all \(x\in \Omega \), \(|x|>\delta \).

Indeed, fix \(f\in C^\infty _c(\Omega )\) and let \(\varphi _\epsilon \in C^{2,\theta }(\overline{\Omega })\) be the solution to the boundary value problem

$$\begin{aligned} \left\{ \begin{array}{ll} L_\epsilon \varphi _\epsilon =-\Delta \varphi _\epsilon -\left( \frac{\gamma \eta _\epsilon }{|x|^2}+h(x)\right) \varphi _\epsilon = f &{}\hbox {in}~\Omega \\ \varphi _\epsilon =0&{}\hbox {on}~\partial \Omega \end{array}\right. \end{aligned}$$
(133)

Multiplying the equation by \(\varphi _\epsilon \), integrating by parts on \(\Omega \), using (131) and Hölder’s inequality, we get that

$$\begin{aligned} \int _\Omega |\nabla \varphi |^2\,{ dx}\le C\Vert f\Vert _{\frac{2n}{n+2}}\Vert \varphi _\epsilon \Vert _{\frac{2n}{n-2}} \end{aligned}$$

where \(C>0\) is independent of \(\epsilon \), f and \(\varphi _\epsilon \). The Sobolev inequality \(\Vert \varphi \Vert _{\frac{2n}{n-2}}\le C\Vert \nabla \varphi \Vert _2\) for \(\varphi \in H_0^1(\Omega )\) then yields

$$\begin{aligned} \Vert \varphi _\epsilon \Vert _{\frac{2n}{n-2}}\le C\Vert f\Vert _{\frac{2n}{n+2}} \end{aligned}$$

where \(C>0\) is independent of \(\epsilon \), f and \(\varphi _\epsilon \).

Fix \(p>n/2\) and \(\delta \in (0,\delta _0)\) and \(\delta _1,\delta _2>0\) such that \(\delta _1+\delta _2<\delta \), and \(x\in \Omega \) such that \(|x|>\delta \). It follows from standard elliptic theory that

$$\begin{aligned} |\varphi _\epsilon (x)|\le & {} \Vert \varphi \Vert _{C^0(B_{\delta _1}(x))}\\\le & {} C\left( \Vert \varphi _\epsilon \Vert _{L^{2^{\star }}(B_{\delta _1+\delta _2}(x))}+\Vert f\Vert _{L^{p}(B_{\delta _1+\delta _2}(x))}\right) \\\le & {} C\left( \Vert f\Vert _{L^{\frac{2n}{n+2}}(\Omega )}+\Vert f\Vert _{L^{p}(B_{\delta _1+\delta _2}(x))}\right) \end{aligned}$$

where \(C>0\) depends on \(p,\delta ,\delta _1,\delta _2\), \(\gamma \) and \(\Vert h\Vert _\infty \). Therefore, Green’s representation formula yields

$$\begin{aligned} \left| \int _\Omega G_\epsilon (x,\cdot )f\,{ dy}\right| \le C\left( \Vert f\Vert _{L^{\frac{2n}{n+2}}(\Omega )}+\Vert f\Vert _{L^{p}(B_{\delta _1+\delta _2}(x))}\right) \end{aligned}$$
(134)

for all \(f\in C^\infty _c(\Omega )\). It follows from (134) that

$$\begin{aligned} \left| \int _\Omega G_\epsilon (x,\cdot )f\,{ dy}\right| \le C\cdot \Vert f\Vert _{L^{p}(\Omega )} \end{aligned}$$

for all \(f\in C^\infty _c(\Omega )\) where \(p>n/2\). It then follows from duality arguments that for any \(q\in (1, n/(n-2))\) and any \(\delta >0\), there exists \(C(\delta ,q)>0\) such that \(\Vert G_\epsilon (x,\cdot )\Vert _{L^q(\Omega )}\le C(\delta ,q)\) for all \(\epsilon <\epsilon _0\) and \(x\in \Omega {\setminus }B_\delta (0)\).

Let \(\delta '\in (0,\delta )\) and \(\delta _1,\delta _2>0\) such that \(\delta _1+\delta _2<\delta '\). We get from (134) that

$$\begin{aligned} \left| \int _\Omega G_\epsilon (x,\cdot )f\,{ dy}\right| \le C\Vert f\Vert _{L^{\frac{2n}{n+2}}(\Omega {\setminus }B_{\delta '}(x))} \end{aligned}$$
(135)

for all \(f\in C^\infty _c(\Omega {\setminus }B_{\delta '}(x))\). Here again, a duality argument yields (132), which proves the claim in Step 1.

Step 2: Convergence of \(G_\epsilon \). Fix \(x\in \Omega {\setminus }\{0\}\). For \(0<\epsilon <\epsilon '\), since \(G_\epsilon (x,\cdot )\), \(G_{\epsilon '}(x,\cdot )\) are \(C^2\) outside x, we have

$$\begin{aligned} -\Delta (G_\epsilon (x,\cdot )-G_{\epsilon '}(x,\cdot ))-\left( \frac{\gamma \eta _\epsilon }{|\cdot |^2}+h\right) (G_\epsilon (x,\cdot )-G_{\epsilon '}(x,\cdot ))= \frac{\gamma (\eta _\epsilon -\eta _{\epsilon '})}{|\cdot |^2}G_{\epsilon '}(x,\cdot ) \end{aligned}$$

in the strong sense. The coercivity (131) then yields

$$\begin{aligned} G_\epsilon (x,\cdot )\ge G_{\epsilon '}(x,\cdot )\quad \hbox {for}\quad 0<\epsilon <\epsilon '\quad \hbox {if}\quad \gamma \ge 0, \end{aligned}$$

and the reverse inequality if \(\gamma <0\). It then follows from the integral bound (132) and elliptic regularity that there exists \(G(x,\cdot )\in C^{2,\theta }(\overline{\Omega }{\setminus }\{0,x\})\) such that

$$\begin{aligned} \lim _{\epsilon \rightarrow 0}G_\epsilon (x,\cdot )=G(x,\cdot )\quad \hbox {in}~C^2_{loc}(\overline{\Omega }-\{0,x\}). \end{aligned}$$

In particular, G is symmetric and

$$\begin{aligned} -\Delta G(x,\cdot )-\left( \frac{\gamma }{|\cdot |^2}+h\right) G(x,\cdot )=0\quad \hbox {in}~\overline{\Omega }{\setminus }\{0,x\}. \end{aligned}$$
(136)

Moreover, passing to the limit \(\epsilon \rightarrow 0\) in (132) and using elliptic regularity, we get that for all \(\delta >0\), \(1<q<\frac{n}{n-2}\) and \(\delta '\in (0,\delta )\), there exist \(C(\delta ,q)>0\) and \(C(\delta ,\delta ')>0\) such that for all \(x\in \Omega \), \(|x|>\delta \),

$$\begin{aligned} \Vert G(x,\cdot )\Vert _{L^q(\Omega )}\le C(\delta ,q)\quad \hbox {and}\quad \Vert G(x,\cdot )\Vert _{L^{\frac{2n}{n-2}}(\Omega {\setminus }B_{\delta '}(x))}\le C(\delta ,\delta '). \end{aligned}$$
(137)

Moreover, for any \(f\in L^p(\Omega )\), \(p>n/2\), let \(\varphi _\epsilon \in C^2(\overline{\Omega })\) be such that (133) holds, and fix \(x\in \Omega {\setminus }\{0\}\). Passing to the limit \(\epsilon \rightarrow 0\) in the Green identity \(\varphi _\epsilon (x)=\int _\Omega G_\epsilon (x,\cdot )f\, dy\) yields

$$\begin{aligned} \varphi (x)=\int _\Omega G(x,\cdot )f\,{ dy}\quad \hbox {for all}~x\in \Omega {\setminus }\{0\} \end{aligned}$$
(138)

where \(\varphi \in H_0^1(\Omega )\cap C^{0}(\overline{\Omega }{\setminus }\{0\})\) is the only weak solution to

$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta \varphi -\left( \frac{\gamma }{|x|^2}+h(x)\right) \varphi = f &{}\hbox {in}~\Omega \\ \varphi =0&{}\hbox {on}~\partial \Omega \end{array}\right. \end{aligned}$$

In particular, the strong comparision principle yields \(G(x,\cdot )>0\) for \(x\in \Omega {\setminus }\{0\}\).

Step 3: Upper bound for G(xy) when one variable is far from 0.

It follows from (136), elliptic theory and (137) that for any \(\delta >0\), there exists \(C(\delta )>0\) such that

$$\begin{aligned} 0<G(x,y)\le C(\delta )\quad \hbox {for}\quad x,y\in \Omega ~\hbox {such that}~|x|>\delta ,\quad |y|>\delta ,\quad |x-y|>\delta . \end{aligned}$$
(139)

We claim that for any \(\delta >0\), there exists \(C(\delta )>0\) such that

$$\begin{aligned} 0<|x-y|^{n-2}G(x,y)\le C(\delta )\quad \hbox {for}\quad x,y\in \Omega ~\hbox {such that}~|x|>\delta \quad \hbox {and}\quad |y|>\delta . \end{aligned}$$
(140)

Indeed, with no loss of generality, we can assume that \(\delta \in (0,\delta _0)\). Define now \(\Omega _\delta :=\Omega {\setminus }B_{\delta /2}(0)\), and fix \(x\in \Omega \) such that \(|x|>\delta \). Let \(H_x\) be the Green’s function for \(-\Delta -\left( \frac{\gamma }{|x|^2}+h(x)\right) \) in \(\Omega _\delta \) with Dirichlet boundary condition. Classical estimates (see [22]) yield the existence of \(C(\delta )>0\) such that \(|x-y|^{n-2}H_x(y)\le C(\delta )\) for all \(x,y\in \Omega _\delta \). It is easy to check that

$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta (G_x-H_x)-\left( \frac{\gamma }{|x|^2}+h\right) (G_x-H_x)= 0 &{}\hbox {weakly in }\Omega _\delta \\ G_x-H_x=0&{}\hbox {on }\partial \Omega \\ G_x-H_x=G_x&{}\hbox {on }\partial B_{\delta /2}(0). \end{array}\right. \end{aligned}$$

Regularity theory then yields that \(G_x-H_x\in C^{2,\theta }(\overline{\Omega _\delta })\). It follows from (139) that \(G_x\) is bounded by a constant depending only on \(\delta \) on \(\partial B_{\delta /2}(0)\) for \(|x|>\delta \). The comparison principle then yields \(|G_x(y)-H_x(y)|\le C(\delta )\) for \(y\in \Omega _\delta \) and \(|x|>\delta \). The above bound for \(H_x\) and (139) then yields (140).

We now claim that for any \(0<\delta '<\delta \), there exists \(C(\delta ,\delta ')>0\) such that

$$\begin{aligned} 0<|y|^{\beta _-(\gamma )}G(x,y)\le C(\delta ,\delta ')\quad \hbox {for}\quad x,y\in \Omega ~\hbox {such that}~|x|>\delta>\delta '>|y|>0.\quad \end{aligned}$$
(141)

Indeed, fix \(\delta _1<\delta \) and use (139) to deduce that \(G_x(y)\le C(\delta ,\delta _1)\) for all \(x\in \Omega {\setminus }B_\delta (0)\) and \(y\in \partial B_{\delta _1}(0)\). Since \(\delta _1<|x|\), we have that

$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta G_x-\left( \frac{\gamma }{|x|^2}+h\right) G_x= 0 &{}\hbox {in }H_1^2(B_{\delta _1}(0))\\ 0<G_x\le C(\delta ,\delta ')&{}\hbox {on }\partial B_{\delta _1}(0). \end{array}\right. \end{aligned}$$

It follows from (162) below that for \(\delta _1>0\) small enough, there exists \(u_{\beta _-}\in H_1^2(B_{\delta _1}(0))\) such that \(c_1\le |z|^{\beta _-(\gamma )}u_{\beta _-}(z)<c_2\) for all \(z\in B_{\delta _1}(0)\), and

$$\begin{aligned} -\Delta u_{\beta _-}-\left( \frac{\gamma }{|x|^2}+h\right) u_{\beta _-}\ge 0\quad \hbox {in }H_1^2(B_{\delta _1}(0)). \end{aligned}$$

Therefore, there exists \(C(\delta ,\delta ')>0\) such that \(G_x(z)\le C(\delta ,\delta ')u_{\beta _-}(z)\) for all \(z\in \partial B_{\delta _1}(0)\). It then follows from the comparison principle that \(G_x(y)\le C(\delta ,\delta ')u_{\beta _-}(y)\) for all \(y\in B_{\delta _1}(0){\setminus }\{0\}\). Combining this with (139), we obtain (141).

Note that by symmetry, we also get that for any \(0<\delta '<\delta \), there exists \(C(\delta ,\delta ')>0\) such that

$$\begin{aligned} |x|^{\beta _-(\gamma )}G(x,y)\le C(\delta ,\delta ')\quad \hbox {for}\quad x,y\in \Omega ~\hbox {such that}~|y|>\delta>\delta '>|x|>0. \end{aligned}$$
(142)

Step 4: Upper bound for G(xy) when both variables approach 0.

We claim first that for all \(c_1,c_2,c_3>0\), there exists \(C(c_1,c_2,c_3)>0\) such that for \(x,y\in \Omega \) such that \(c_1|x|<|y|<c_2|x|\) and \(|x-y|>c_3|x|\), we have

$$\begin{aligned} |x-y|^{n-2}G(x,y)\le C(c_1,c_2,c_3). \end{aligned}$$
(143)

Indeed, fix \(x\in B_{\delta _0/2}(0){\setminus }\{0\}\subset \Omega {\setminus }\{0\}\), and define

$$\begin{aligned} H(z):=G_x(|x|z)\quad \hbox {for}\quad z\in B_{\delta _0/|x|}(0){\Big \backslash }\left\{ 0,\frac{x}{|x|}\right\} , \end{aligned}$$

so that

$$\begin{aligned} -\Delta H-\left( \frac{\gamma }{|z|^2}+|x|^2h(|x|z)\right) H=0\quad \hbox {in }B_{\delta _0/|x|}(0){\Big \backslash }\left\{ 0,\frac{x}{|x|}\right\} . \end{aligned}$$

Since \(H>0\), it follows from the Harnack inequality that for all \(R>0\) large enough and \(\alpha >0\) small enough, there exist \(\delta _1>0\) and \(C>0\) independent of \(|x|<\delta _1\) such that

$$\begin{aligned} H(z)\le C H(z')\quad \hbox {for all}~z,z'\in B_R(0){\setminus }\left( B_\alpha (0)\cup B_\alpha \left( \frac{x}{|x|}\right) \right) , \end{aligned}$$

which rewrites as:

$$\begin{aligned} G_x(y)\le C G_x(y')\quad \hbox {for all}~y,y'\in B_{R|x|}(0){\setminus }\left( B_{\alpha |x|}(0)\cup B_{\alpha |x|}(x)\right) . \end{aligned}$$
(144)

Let \(u_{\beta _+}\) be a sub-solution to (163). In particular, for \(|x|<\delta _2\) small, there exists \(C>0\) such that

$$\begin{aligned} G_x(z)\ge c|x|^{\beta _+(\gamma )}\left( \inf _{\partial B_{R|x|}(0)}G_x\right) u_{\beta _+}(z)\quad \hbox {for all}~z\in \partial B_{R|x|}(0). \end{aligned}$$

Since \(-\Delta G_x-(\gamma |\cdot |^{-2}+h)G_x=0\) outside 0, it follows from coercivity and the comparison principle that

$$\begin{aligned} G_x(z)\ge c|x|^{\beta _+(\gamma )}\left( \inf _{\partial B_{R|x|}(0)}G_x\right) u_{\beta _+}(z)\quad \hbox {for all}~z\in \Omega {\setminus }B_{R|x|}(0). \end{aligned}$$

Fix \(z_0\in \Omega {\setminus }\{0\}\). Then for \(\delta _3\) small enough, it follows from (142) and the Harnack inequality (144) that there exists \(C>0\) independent of x such that

$$\begin{aligned} G_x(y)\le C |x|^{-\beta _+(\gamma )-\beta _-(\gamma )}\quad \hbox {for all}~y\in B_{R|x|}(0){\setminus }\left( B_{\alpha |x|}(0)\cup B_{\alpha |x|}(x)\right) \end{aligned}$$

Taking \(\alpha >0\) small enough and \(R>0\) large enough, we then get (143) for \(|x|<\delta _3\). The general case for arbitrary \(x\in \Omega {\setminus }\{0\}\) then follows from (140). This prove (143).

Next we claim that for all \(c_1,c_2>0\), there exists \(C(c_1,c_2)>0\) such that

$$\begin{aligned} |x-y|^{n-2}G(x,y)\le C(c_1,c_2)\quad \hbox {for}\quad x,y\in \Omega ~\hbox {such that}~c_1|x|<|y|<c_2|x|. \end{aligned}$$
(145)

For that, we fix \(x\in B_{\delta _0/2}(0){\setminus }\{0\}\) and set

$$\begin{aligned} H(z):=|x|^{n-2}G_x(x+|x|z)\quad \hbox {for all}~z\in B_{1/2}(0){\setminus }\{0\}. \end{aligned}$$

We have that \(H\in C^2(\overline{B_{1/2}(0)}{\setminus }\{0\})\) and satisfies

$$\begin{aligned} -\Delta H-\left( \frac{\gamma }{\left| \frac{x}{|x|}+z\right| ^2} +|x|^2h(x+|x|z)\right) H=\delta _0~\hbox {weakly in}~B_{1/2}(0). \end{aligned}$$

We now argue as in the proof of (140). From (143), we have that \(|H(z)|\le C\) for all \(z\in \partial B_{1/2}(0)\) where C is independent of \(x\in B_{\delta _0/2}(0){\setminus }\{0\}\). Let \(\Gamma _0\) be the Green’s function of \(-\Delta -\left( \frac{\gamma }{\left| \frac{x}{|x|}+z\right| ^2}+|x|^2h(x+|x|z)\right) \) at 0 on \(B_{1/2}(0)\) with Dirichlet boundary condition. Therefore, \(H-\Gamma _0\in C^2(\overline{B_{1/2}(0)})\) and, via the comparison principle, it is bounded by its supremum on the boundary. Therefore \(|z|^{n-2}H(z)\le C\) for all \(B_{1/2}(0){\setminus }\{0\}\) where C is independent of \(x\in B_{\delta _0/2}(0){\setminus }\{0\}\). Scaling back and using (143), we get (145) for \(x\in B_{\delta _0/2}(0){\setminus }\{0\}\). The general case is a consequence of (140). This ends the proof of (145).

We now show that there exists \(C>0\) such that

$$\begin{aligned} |y|^{\beta _-(\gamma )}|x|^{\beta _+(\gamma )}G(x,y)\le C\quad \hbox {for}\quad x,y\in \Omega ~\hbox {such that}~|y|<\frac{1}{2}|x|. \end{aligned}$$
(146)

Indeed, the proof goes essentially as in (141). Fix \(x\in B_{\delta _0/2}(0)\), \(x\ne 0\), and set \(H(z):=|x|^{n-2}G_x(|x|z)\) for \(z\in B_{1/2}(0){\setminus }\{0\}\). We have that

$$\begin{aligned} -\Delta H-\left( \frac{\gamma }{|z|^2}+|x|^2h(|x|z)\right) H=0\quad \hbox {in}~H_1^2(B_{1/2}(0)). \end{aligned}$$

Moreover, it follows from (143) that there exists \(C>0\) such that \(|H(z)|\le C\) for all \(z\in \partial B_{1/2}(0)\). Then, as above, using a super-solution, we get that there exists \(C>0\) such that \(0<H(z)\le C|z|^{-\beta _-(\gamma )}\) for all \(z\in B_{1/2}(0){\setminus }\{0\}\). Scaling back yields (146) when \(x\in B_{\delta _0/2}(0)\). The general case follows from (141). This proves (146).

Again, by symmetry, we conclude that there exists \(C>0\) such that

$$\begin{aligned} |x|^{\beta _-(\gamma )}|y|^{\beta _+(\gamma )}G(x,y)\le C\quad \hbox {for}\quad x,y\in \Omega ~\hbox {such that}~|x|<\frac{1}{2}|y|. \end{aligned}$$
(147)

Finally, one easily checks that (129) is a direct consequence of (146), (147) and (145). When \(f\in C^\infty _c(\Omega )\), identity (127) is a consequence of (138). The general case follows from density and the integral controls on G. The behavior (128) is a consequence of the classification of solutions to harmonic equations and Theorem 9.

To conclude, we shall briefly sketch the proof of the lower bound (130). Indeed, in Steps 3 and 4, we repeatedly used the comparison principle to get the upper bound for G by considering domains on the boundary of which G was bounded from above. As one checks, in the case when xy are in \(\omega \subset \subset \Omega \), G is also bounded from below by some positive constant on the boundary of these domains. This yields the lower bound (130), and completes the proof of Theorem 6. \(\square \)

Appendix B: Green’s function for \(-\Delta -\gamma |x|^{-2}\) on \({\mathbb {R}}^n\)

In this section, we prove the following:

Theorem 7

Fix \(\gamma <\frac{(n-2)^2}{4}\). For all \(p\in {\mathbb {R}}^n{\setminus }\{0\}\), there exists \(G:{\mathbb {R}}^n{\setminus }\{0,p\}\rightarrow {\mathbb {R}}\) such that

  1. (i)

    \(G\in H_{1,loc}^2({\mathbb {R}}^n{\setminus }\{p\})\),

  2. (ii)

    For all \(\varphi \in C^\infty _c({\mathbb {R}}^n)\), we have that

    $$\begin{aligned} \varphi (p)=\int _{{\mathbb {R}}^n}G(x)\left( -\Delta \varphi -\frac{\gamma }{|x|^2}\varphi \right) \,{ dx}\quad \hbox {for all}~\varphi \in C^\infty _c({\mathbb {R}}^n) \end{aligned}$$
    (148)

    Moreover, if \(G,G'\) satisfy (i) and (ii) and are positive, then there exists \(C\in {\mathbb {R}}\) such that \(G(x)-G'(x)=C|x|^{-\beta _-(\gamma )}\) for all \(x\in {\mathbb {R}}^n{\setminus }\{0,p\}\).

    In addition, there exists one and only one function \(G:=G_p>0\) such that (i) and (ii) hold and

  3. (iii)

    For all \(p\in {\mathbb {R}}^n{\setminus }\{0\}\), there exists \(c_0(p),c_\infty (p)>0\) such that

    $$\begin{aligned} G_p(x)\sim _{x\rightarrow 0} \frac{c_0(p)}{|x|^{\beta _-(\gamma )}}\quad \hbox {and}\quad G_p(x)\sim _{x\rightarrow \infty } \frac{c_\infty (p)}{|x|^{\beta _+(\gamma )}} \end{aligned}$$

    and

    $$\begin{aligned} G_p(x)\sim _{x\rightarrow p}\frac{1}{(n-2)\omega _{n-1}|x-p|^{n-2}}. \end{aligned}$$
    (149)
  4. (iv)

    There exists \(c>0\) independent of p such that

    $$\begin{aligned} c^{-1}\left( \frac{\max \{|p|,|x|\}}{\min \{|p|,|x|\}} \right) ^{\beta _-(\gamma )}|x-p|^{2-n}\le G_p(x)\le c \left( \frac{\max \{|p|,|x|\}}{\min \{|p|,|x|\}}\right) ^{\beta _-(\gamma )}|x-p|^{2-n} \end{aligned}$$
    (150)

Remark

Note that when \(\gamma =0\), we have \(\beta _-(\gamma )=0\), \(\beta _+(\gamma )=n-2\) and \(G(p,x)=\frac{1}{(n-2)\omega _{n-1}}|x-p|^{2-n}\) for all \(x,p\in {\mathbb {R}}^n\), \(x\ne p\).

Proof

We shall again proceed with several steps.

Step 1: Construction of a positive kernel at a given point: For a fixed \(p_0\in {\mathbb {R}}^n{\setminus }\{0\}\), we show that there exists \(G\in C^2({\mathbb {R}}^n{\setminus }\{0,p_0\})\) such that

$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta G-\frac{\gamma }{|x|^2}G=0&{}\hbox {in}~{\mathbb {R}}^n{\setminus }\{0,p_0\}\\ G>0&{}\\ G\in L^{\frac{2n}{n-2}}(B_\delta (0))&{}\hbox {with}~\delta :=|p_0|/4\\ G\hbox { satisfies (ii)}. \end{array}\right. \end{aligned}$$
(151)

Indeed, let \({\tilde{\eta }}\in C^\infty ({\mathbb {R}})\) be a nondecreasing function such that \(0\le {\tilde{\eta }}\le 1\), \({\tilde{\eta }}(t)=0\) for all \(t\le 1\) and \({\tilde{\eta }}(t)=1\) for all \(t\ge 2\). For \(\epsilon >0\), set \(\eta _\epsilon (x):={\tilde{\eta }}\left( \frac{|x|}{\epsilon }\right) \) for all \(x\in {\mathbb {R}}^n\). For \(R>0\), we argue as in the proof of (131) to deduce that the operator \(-\Delta -\frac{\gamma \eta _\epsilon }{|x|^2}\) is coercive on \(B_R(0)\) and that there exists \(c>0\) independent of \(R,\epsilon >0\) such that

$$\begin{aligned} \int _{B_R(0)}\left( |\nabla \varphi |^2-\frac{\gamma \eta _\epsilon }{|x|^2}\varphi ^2\right) \,{ dx}\ge c\int _{B_R(0)}|\nabla \varphi |^2\,{ dx}\quad \hbox {for all}~ \varphi \in C^\infty _c(B_R(0)). \end{aligned}$$

Consider \(R,\epsilon >0\) such that \(R>2|p_0|\) and \(\epsilon <\frac{|p_0|}{6}\), and let \(G_{R,\epsilon }\) be the Green’s function of \(-\Delta -\frac{\gamma \eta _\epsilon }{|x|^2}\) in \(B_R(0)\) at the point \(p_0\) with Dirichlet boundary condition. We have that \(G_{R,\epsilon }>0\) since the operator is coercive.

Fix \(R_0>0\) and \(q'\in (1,\frac{n}{n-2})\), then by arguing as in the proof of (132), we get that there exists \(C=C(\gamma ,p_0, q', R_0)\) such that

$$\begin{aligned} \Vert G_{R,\epsilon }\Vert _{L^{q'}(B_{R_0}(0))}\le C\quad \hbox {for all}~R>R_0\quad \hbox {and}\quad 0<\epsilon <\frac{|p_0|}{6}, \end{aligned}$$
(152)

and

$$\begin{aligned} \Vert G_{R,\epsilon }\Vert _{L^{\frac{2n}{n-2}}(B_{\delta _0}(0))}\le C\quad \hbox {for all}~R>R_0\quad \hbox {and}\quad 0<\epsilon <\frac{|p_0|}{6}, \end{aligned}$$
(153)

where \(\delta :=|p_0|/4\). Arguing again as in Step 2 of the proof of Theorem 6, there exists \(G\in C^2({\mathbb {R}}^n{\setminus }\{0,p_0\})\) such that

$$\begin{aligned} \left\{ \begin{array}{ll} G_{R,\epsilon }\rightarrow G\ge 0&{}\hbox {in}~C^2_{loc}({\mathbb {R}}^n{\setminus }\{0,p_0\})~\hbox {as}~R\rightarrow +\infty ,\,\epsilon \rightarrow 0\\ -\Delta G-\frac{\gamma }{|x|^2}G=0&{}\hbox {in}~{\mathbb {R}}^n{\setminus }\{0,p_0\}\\ G\in L^{\frac{2n}{n-2}}(B_\delta (0)) \end{array}\right. \end{aligned}$$
(154)

Fix \(\varphi \in C^\infty _c({\mathbb {R}}^n)\). For \(R>0\) large enough, we have that \(\varphi (p_0)=\int _{{\mathbb {R}}^n}G_{R,\epsilon }(-\Delta \varphi -\gamma \eta _\epsilon |x|^{-2}\varphi )\,{ dx}\). With the integral bounds above, we then get that \(x\mapsto G(x) |x|^{-2}\in L^1_{{ loc}}({\mathbb {R}}^n)\). Therefore, we get

$$\begin{aligned} \varphi (p_0)=\int _{{\mathbb {R}}^n}G(x)\left( -\Delta \varphi -\frac{\gamma }{|x|^2}\varphi \right) \,{ dx}\quad \hbox {for all}~\varphi \in C^\infty _c({\mathbb {R}}^n). \end{aligned}$$
(155)

As a consequence, \(G>0\).

Step 2: Asymptotic behavior at 0 and p for solutions to (151). It follows from Theorem 9 below that either G behaves like \(|x|^{-\beta _-(\gamma )}\) or \(|x|^{-\beta _+(\gamma )}\) at 0. Since \(G\in L^{\frac{2n}{n-2}}(B_\delta (0))\) for some small \(\delta >0\) and \(\beta _-(\gamma )<\frac{n-2}{2}<\beta _+(\gamma )\), we get that there exists \(c>0\) such that

$$\begin{aligned} \lim _{x\rightarrow 0}|x|^{\beta _-(\gamma )}G(x)=c. \end{aligned}$$
(156)

In addition, Theorem 9 yields \(G\in H_{1,loc}^2({\mathbb {R}}^n{\setminus }\{p_0\})\). Since G is positive and smooth in a neighborhood of p, it follows from (155) and the classification of solutions to harmonic equations that

$$\begin{aligned} G(x)\sim _{x\rightarrow p_0}\frac{1}{(n-2)\omega _{n-1}|x-p_0|^{n-2}}. \end{aligned}$$
(157)

Step 3: Asymptotic behavior at \(\infty \) for solutions to (151): We let

$$\begin{aligned} \tilde{G}(x):=\frac{1}{|x|^{n-2}}G\left( \frac{x}{|x|^2}\right) \quad \hbox {for all}~x\in {\mathbb {R}}^n{\Big \backslash }\left\{ 0, \frac{p_0}{|p_0|^2}\right\} , \end{aligned}$$

be the Kelvin’s transform of G. We have that

$$\begin{aligned} -\Delta \tilde{G}-\frac{\gamma }{|x|^2}\tilde{G}=0\quad \hbox {in}~{\mathbb {R}}^n{\Big \backslash }\left\{ 0, \frac{p_0}{|p_0|^2}\right\} . \end{aligned}$$

Since \(\tilde{G}>0\), it follows from Theorem 9 that there exists \(c_1>0\) such that

$$\begin{aligned} \hbox {either}~\tilde{G}(x)\sim _{x\rightarrow 0}\frac{c_1}{|x|^{\beta _-(\gamma )}}~\hbox {or}~\tilde{G}(x)\sim _{x\rightarrow 0}\frac{c_1}{|x|^{\beta _+(\gamma )}}. \end{aligned}$$

Coming back to G, we get that

$$\begin{aligned} \hbox {either}~G(x)\sim _{x\rightarrow \infty }\frac{c_1}{|x|^{\beta _+(\gamma )}}~\hbox {or}~G(x)\sim _{|x|\rightarrow \infty }\frac{c_1}{|x|^{\beta _-(\gamma )}}. \end{aligned}$$

Assuming we are in the second case, for any \(c\le c_1\), we define

$$\begin{aligned} \bar{G}_c(x):=G(x)-\frac{c}{|x|^{\beta _-(\gamma )}}~\hbox {in}~{\mathbb {R}}^n{\setminus }\{0, p_0\}, \end{aligned}$$

which satisfy \(-\Delta \bar{G}-\frac{\gamma }{|x|^2}\bar{G}=0\) in \({\mathbb {R}}^n{\setminus }\{0, p_0\}\). It follows from (156) and (157) that for \(c<c_1\), \(\bar{G}_c>0\) around \(p_0\) and \(\infty \). It then follows from the coercivity of \(-\Delta -\gamma |x|^{-2}\) that \(\bar{G}_c>0\) in \({\mathbb {R}}^n{\setminus }\{0, p\}\) for \(c<c_1\). Letting \(c\rightarrow c_1\) yields \(\bar{G}_{c_1}\ge 0\), and then \(\bar{G}_{c_1}> 0\) since it is positive around \(p_0\). Since \(\bar{G}_{c_1}(x)=o(|x|^{-\beta _-(\gamma )})\) as \(|x|\rightarrow \infty \), performing again a Kelvin transform and using Theorem 9, we get that \(|x|^{\beta _+(\gamma )}\bar{G}_{c_1}(x)\rightarrow c_2>0\) as \(|x|\rightarrow \infty \). Then there exists \(c_3>0\) such that

$$\begin{aligned} \lim _{x\rightarrow 0}|x|^{\beta _-(\gamma )}\bar{G}_{c_1}(x)=c_3>0\quad \hbox {and}\quad \lim _{x\rightarrow \infty }|x|^{\beta _+(\gamma )}\bar{G}_{c_1}(x)=c_2. \end{aligned}$$

Since \(x\mapsto |x|^{-\beta _-(\gamma )}\in H_{1,loc}^2({\mathbb {R}}^n)\), we get that \(\varphi (p)=\int _{{\mathbb {R}}^n}\bar{G}_{c_1}(x)\left( -\Delta \varphi -\frac{\gamma }{|x|^2}\varphi \right) \,{ dx}\) for all \(\varphi \in C^\infty _c({\mathbb {R}}^n)\).

Step 4: Uniqueness: Let \(G_1,G_2>0\) be 2 functions such that (i), (ii) hold for \(p:=p_0\), and set \(H:=G_1-G_2\). It follows from Steps 2 and 3 that there exists \(c\in {\mathbb {R}}\) such that \(H'(x):=H(x)-c|x|^{-\beta _-(\gamma )}\) satisfies

$$\begin{aligned} H'(x)=_{x\rightarrow 0}O\left( |x|^{-\beta _-(\gamma )}\right) \quad \hbox {and}\quad H'(x)=_{|x|\rightarrow \infty }O\left( |x|^{-\beta _+(\gamma )}\right) . \end{aligned}$$
(158)

We then have that \(H\in H_{1,{ loc}}^2({\mathbb {R}}^n{\setminus }\{p_0\})\) is such that

$$\begin{aligned} \int _{{\mathbb {R}}^n}H'(x)\left( -\Delta \varphi -\frac{\gamma }{|x|^2}\varphi \right) \, { dx}=0 \quad \hbox {for all}~\varphi \in C^\infty _c({\mathbb {R}}^n). \end{aligned}$$

The ellipticity of the Laplacian then yields that \(H'\in C^\infty ({\mathbb {R}}^n{\setminus }\{0\})\). The pointwise bounds (158) yield that \(H'\in D^{1,2}({\mathbb {R}}^n)\). Multiplying \(-\Delta H'-\frac{\gamma }{|x|^2}H'=0\) by \(H'\), integrating by parts and using the coercivity yields that \(H'\equiv 0\), and therefore, \(G_1-G_2=c|\cdot |^{-\beta _-(\gamma )}\). This proves uniqueness.

Step 5: Existence. It follows from Step 3 that, up to substracting a multiple of \(|\cdot |^{-\beta _-(\gamma )}\), there exists \(G_{p_0}>0\) satisfying (i), (ii) and the pointwise controls (iii) at \(p_0\). It is a consequence of (iii) that there exists \(c>0\) such that

$$\begin{aligned} c^{-1} \left( \frac{\max \{1,|x|\}}{\min \{1,|x|\}}\right) ^{\beta _-(\gamma )}|x-p_0|^{2-n}\le G_{p_0}(x)\le c \left( \frac{\max \{1,|x|\}}{\min \{1,|x|\}}\right) ^{\beta _-(\gamma )}|x-p_0|^{2-n} \end{aligned}$$

for all \(x\in {\mathbb {R}}^n{\setminus }\{0,p_0\}\), c depending on \(p_0\). For \(p\in {\mathbb {R}}^n{\setminus }\{0\}\), consider \(\rho _p: {\mathbb {R}}^n\rightarrow {\mathbb {R}}^n\) a linear isometry such that \(\rho _p(\frac{p_0}{|p_0|})=\frac{p}{|p|}\), and define

$$\begin{aligned} G_p(x):=\left( \frac{|p_0|}{|p|}\right) ^{n-2}G_{p_0} \left( \left( \rho _p^{-1}\left( \frac{|p_0|}{|p|}x\right) \right) \right) \quad \hbox {for all}~x\in {\mathbb {R}}^n{\setminus }\{0,p\}. \end{aligned}$$

It is easy to check that \(G_p>0\) and that it satisfies (i)–(iv). \(\square \)

Appendix C: Singular solutions to \(-\Delta u-c(x) |x|^{-2}u=0\)

We collect here a few results that should be classical, but quite difficult to find in the literature. These results and their proofs are closely related to the work of the authors in [15], to which we shall frequently refer for details.

Theorem 8

(Optimal regularity and Generalized Hopf’s Lemma) Fix \(\gamma <\frac{(n-2)^2}{4}\) and let \(f: \Omega \times {\mathbb {R}}\rightarrow {\mathbb {R}}\) be a Caratheodory function such that

$$\begin{aligned} |f(x, v)|\le C|v| \left( 1+\frac{|v|^{2^\star (s)-2}}{|x|^s}\right) \quad \hbox { for all}~x\in \Omega \quad \hbox {and}\quad v\in {\mathbb {R}}. \end{aligned}$$

Let \(u\in H_1^2(B_1(0))\) be a weak solution of

$$\begin{aligned} -\Delta u-\frac{\gamma +O(|x|^\theta )}{|x|^2}u=f(x,u)\quad \hbox {in}~H_1^2(B_{1/2}(0)) \end{aligned}$$
(159)

for some \(\theta >0\). Then, there exists \(K\in {\mathbb {R}}\) such that

$$\begin{aligned} \lim _{x\rightarrow 0}\frac{u(x)}{|x|^{-\beta _-(\gamma )}}=K. \end{aligned}$$
(160)

Moreover, if \(u\ge 0\) and \(u\not \equiv 0\), we have that \(K>0\).

Theorem 9

Let \(u\in C^2(B_1(0){\setminus }\{0\})\) be a positive solution to

$$\begin{aligned} -\Delta u-\frac{c(x)}{|x|^2}u=0\quad \hbox {in}~B_1(0){\setminus }\{0\} \end{aligned}$$

where \(c(x)=\gamma +O(|x|^\theta )\) as \(x\rightarrow 0\) with \(\gamma <(n-2)^2/4\) and \(\theta \in (0,1)\). Then there exists \(\alpha >0\) such that

$$\begin{aligned} \hbox {either}~u(x)\sim _{x\rightarrow 0}\frac{\alpha }{|x|^{\beta _-(\gamma )}}~\hbox {or}~u(x)\sim _{x\rightarrow 0}\frac{\alpha }{|x|^{\beta _+(\gamma )}}. \end{aligned}$$

In particular, \(u\in H_1^2(B_{1/2}(0))\) if and only if the first case holds.

Proposition 11

Let \(u\in C^2({\mathbb {R}}^n{\setminus }\{0\})\) be a nonnegative function such that

$$\begin{aligned} -\Delta u-\frac{\gamma }{|x|^2}u=0\quad \hbox {in}~{\mathbb {R}}^n{\setminus }\{0\}. \end{aligned}$$
(161)

Then there exist \(\lambda _-,\lambda _+\ge 0\) such that

$$\begin{aligned} u(x)=\lambda _- |x|^{-\beta _-(\gamma )}+\lambda _+ |x|^{-\beta _+(\gamma )}\quad \hbox {for all}~x\in {\mathbb {R}}^n{\setminus }\{0\}. \end{aligned}$$

Proofs: The proofs of these results follow closely the proofs of Theorems 6.1 and 7.1 and Proposition 7.4 of [15]. Here are the ingredients to adapt:

Sub- and super-solutions: The first step is the following result:

Proposition 12

Fix \(\gamma <(n-2)^2/4\) and \(\theta \in (0,1)\) and let \(c:B_1(0)\rightarrow {\mathbb {R}}\) be such that \(c(x)=\gamma +O(|x|^\theta )\) as \(x\rightarrow 0\). We choose \(\beta \in \{\beta _-(\gamma ),\beta _+(\gamma )\}\). Then there exists \(u_\beta ^{(+)}, u_\beta ^{(-)}\in C^2(B_1(0))\) such that for \(\delta >0\) small enough,

$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta u_{\beta }^{(+)}-\frac{c(x)}{|x|^2}u_{\beta }^{(+)}>0 &{}\hbox {in}~B_\delta (0)\\ u_{\beta }^{(+)}(x)\sim |x|^{-\beta }&{}\hbox {as}~x\rightarrow 0 \end{array}\right. ;\quad \left\{ \begin{array}{ll} -\Delta u_{\beta }^{(-)}-\frac{c(x)}{|x|^2}u_{\beta }^{(-)}<0 &{}\hbox {in}~B_\delta (0)\\ u_{\beta }^{(-)}(x)\sim |x|^{-\beta }&{}\hbox {as}~x\rightarrow 0 \end{array}\right. \end{aligned}$$
(162)

The proof is as follows. For \(\beta \in \{\beta _-(\gamma ),\beta _+(\gamma )\}\), we define \(u_{\beta }:\, x\mapsto |x|^{-\beta }+\lambda |x|^{-\beta '}\). A straightforward computation yields

$$\begin{aligned} -\Delta u_{\beta }-\frac{c(x)}{|x|^2}u_{\beta }=|x|^{-\beta '-2} \left( \lambda (\beta '(n-2-\beta ')-\gamma )+O(|x|^\theta ) +O(|x|^{\theta -(\beta -\beta ')}\right) \end{aligned}$$

as \(x\rightarrow 0\). Then, choosing \(\beta '\in {\mathbb {R}}\) such that \(0<\beta -\beta '<\theta \) and \(\beta '(n-2-\beta ')-\gamma \ne 0\), we get either a sub- or a supersolution taking \(\lambda \) positive or negative. This proves the proposition.

Sub-solution with Dirichlet boundary condition: We let \(u_{\beta _+(\gamma )}\) as above be a super-solution on \(B_\delta (0){\setminus }\{0\}\). Take \(\eta \in C^\infty ({\mathbb {R}}^n)\) such that \(\eta (x)=0\) for \(x\in B_{\delta /4}(0)\) and \(\eta (x)=1\) for \(x\in {\mathbb {R}}^n{\setminus }B_{\delta /3}(0)\). Define on \(B_\delta (0)\) the function

$$\begin{aligned} f(x):=\left( -\Delta -\frac{c(x)}{|x|^2}\right) (\eta u_{\beta _+(\gamma )}), \end{aligned}$$

Note that f vanishes around 0 and that it is in \(C^\infty (\overline{B_\delta (0)})\). Let \(v\in D^{1,2}(B_\delta (0))\) be such that

$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta v-\frac{c(x)}{|x|^2}v=f&{}\hbox {in}~B_\delta (0)\\ v=0&{}\hbox {on}~\partial B_\delta (0). \end{array}\right. \end{aligned}$$

Note that for \(\delta >0\) small enough, \(-\Delta -(\gamma +O(|x|^\theta ))|x|^{-2}\) is coercive on \(B_\delta (0)\), and therefore, the existence of v is ensured for small \(\delta \). Define

$$\begin{aligned} u_{\beta _+(\gamma )}^{(d)}:=u_{\beta _+(\gamma )}-\eta u_{\beta _+(\gamma )}+v. \end{aligned}$$

The definition of \(\eta \) and v yields

$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta u_{\beta _+(\gamma )}^{(d)}-\frac{c(x)}{|x|^2}u_{\beta _+(\gamma )}^{(d)}>0&{} \hbox {in}~B_\delta (0)-\{0\}\\ u_{\beta _+(\gamma )}^{(d)}=0&{}\hbox {in}~\partial B_\delta (0) \end{array}\right. \end{aligned}$$
(163)

Moreover, since \(-\Delta v-c(x)|x|^{-2}v=0\) around 0 and \(v\in D^{1,2}(B_\delta (0))\), it follows from Theorem 8 that there exists \(C>0\) such that \(|v(x)|\le C |x|^{-\beta _-(\gamma )}\) for all \(x\in B_\delta (0)\). Then it follows from the expression of \(u_{\beta _+(\gamma )}\) that

$$\begin{aligned} u_{\beta _+(\gamma )}(x)\sim _{x\rightarrow 0}|x|^{-\beta _+(\gamma )}. \end{aligned}$$

We then get a supersolution satisfying (163) with the above behavior at 0. This is similar for a subsolution.

In the proof above, it is important that the operator \(-\Delta -c(x)|x|^{-2}\) is coercive on \(B_\delta (0)\) for \(\delta >0\) small enough. Now let \(\Omega \) be a smooth bounded domain of \({\mathbb {R}}^n\) and let \(\gamma <(n-2)^2/4\) and \(h\in C^{0,\theta (\overline{\Omega })}\) be such that \(-\Delta -(\gamma |x|^{-2}+h)\) is coercive on \(\Omega \). Arguing as above, we get that there exists \(u_{\beta _+(\gamma )}^{(d,\Omega )}\in C^{2,\theta }(\overline{\Omega }{\setminus }\{0\})\) such that

$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta u_{\beta _+(\gamma )}^{(d,\Omega )}-\left( \frac{\gamma }{|x|^2}+h\right) u_{\beta _+(\gamma )}^{(d)}>0&{}\hbox {in}~\Omega {\setminus }\{0\}\\ u_{\beta _+(\gamma )}^{(d,\Omega )}>0 &{}\hbox {in}~\Omega {\setminus }\{0\}\\ u_{\beta _+(\gamma )}^{(d,\Omega )}=0 &{}\hbox {in}~\partial \Omega \end{array}\right. \end{aligned}$$
(164)

and

$$\begin{aligned} u_{\beta _+(\gamma )}^{(d,\Omega )}(x)\sim _{x\rightarrow 0}|x|^{-\beta _+(\gamma )}. \end{aligned}$$

Similarly, we get a subsolution.

These points are enough to adapt the proofs of the above-mentioned results of [15] to our context. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghoussoub, N., Robert, F. The Hardy–Schrödinger operator with interior singularity: the remaining cases. Calc. Var. 56, 149 (2017). https://doi.org/10.1007/s00526-017-1238-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1238-1

Mathematics Subject Classification

Navigation