Skip to main content
Log in

Abstract

Let \(\Omega \subset \mathbb {R}^n\), \(n\ge 2\), be a bounded domain satisfying the separation property. We show that the following conditions are equivalent:

  1. (i)

    \(\Omega \) is a John domain;

  2. (ii)

    for a fixed \(p\in (1,\infty )\), the Korn inequality holds for each \(\mathbf {u}\in W^{1,p}(\Omega ,\mathbb {R}^n)\) satisfying \(\int _\Omega \frac{\partial u_i}{\partial x_j}-\frac{\partial u_j}{\partial x_i}\,dx=0\), \(1\le i,j\le n\),

    $$\begin{aligned} \Vert D\mathbf {u}\Vert _{L^p(\Omega )}\le C_K(\Omega , p)\Vert \epsilon (\mathbf {u})\Vert _{L^p(\Omega )}; \qquad (K_{p}) \end{aligned}$$
  3. (ii’)

    for all \(p\in (1,\infty )\), \((K_p)\) holds on \(\Omega \);

  4. (iii)

    for a fixed \(p\in (1,\infty )\), for each \(f\in L^p(\Omega )\) with vanishing mean value on \(\Omega \), there exists a solution \(\mathbf {v}\in W^{1,p}_0(\Omega ,\mathbb {R}^n)\) to the equation \(\mathrm {div}\,\mathbf {v}=f\) with

    $$\begin{aligned} \Vert \mathbf {v}\Vert _{W^{1,p}(\Omega ,\mathbb {R}^n)}\le C(\Omega , p)\Vert f\Vert _{L^p(\Omega )};\qquad (DE_p) \end{aligned}$$
  5. (iii’)

    for all \(p\in (1,\infty )\), \((DE_p)\) holds on \(\Omega \).

For domains satisfying the separation property, in particular, for finitely connected domains in the plane, our result provides a geometric characterization of the Korn inequality, and gives positive answers to a question raised by Costabel and Dauge (Arch Ration Mech Anal 217(3):873–898, 2015) and a question raised by Russ (Vietnam J Math 41:369–381, 2013). For the plane, our result is best possible in the sense that, there exist infinitely connected domains which are not John but support Korn’s inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Acosta, G., Durán, R.G., Muschietti, M.A.: Solutions of the divergence operator on John domains. Adv. Math. 206, 373–401 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Acosta, G., Durán, R.G., Lombardi, A.L.: Weighted Poincaré and Korn inequalities for Hölder \(\alpha \) domains. Math. Methods Appl. Sci. 29, 387–400 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Acosta, G., Durán, R.G., López, G.F.: Korn inequality and divergence operator: counter-examples and optimality of weighted estimates. Proc. Am. Math. Soc. 141, 217–232 (2013)

    Article  MATH  Google Scholar 

  4. Astala, K., Gehring, F.W.: Quasiconformal analogues of theorems of Koebe and Hardy–Littlewood. Mich. Math. J. 32(1), 99–107 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Babuška, I., Aziz, A.K.: Survey lectures on the mathematical foundations of the finite element method. With the collaboration of G. Fix and R. B. Kellogg. The mathematical foundations of the finite element method with applications to partial differential equations. In: Proceedings of Symposia, University of Maryland, Baltimore, pp. 1–359. Academic Press, New York (1972)

  6. Buckley, S., Koskela, P.: Sobolev–Poincaré implies John. Math. Res. Lett. 2, 577–593 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ciarlet, P.G., Ciarlet Jr., P.: Another approach to linearized elasticity and a new proof of Korn’s inequality. Math. Models Methods Appl. Sci. 15, 259–271 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cianchi, A.: Korn type inequalities in Orlicz spaces. J. Funct. Anal. 267, 2313–2352 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Conti, S., Faraco, D., Maggi, F.: A new approach to counterexamples to \(L^1\) estimates: Korn’s inequality, geometric rigidity, and regularity for gradients of separately convex functions. Arch. Ration. Mech. Anal. 175, 287–300 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Costabel, M., Dauge, M.: On the inequalities of Babuška–Aziz, Friedrichs and Horgan–Payne. Arch. Ration. Mech. Anal. 217(3), 873–898 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Diening, L., Ružička, M., Schumacher, K.: A decomposition technique for John domains. Ann. Acad. Sci. Fenn. Math. 35, 87–114 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Duvaut, G., Lions, J.-L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  13. Friedrichs, K.O.: On certain inequalities and characteristic value problems for analytic functions and for functions of two variables. Trans. Am. Math. Soc. 41, 321–364 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  14. Friedrichs, K.O.: On the boundary-value problems of the theory of elasticity and Korn’s inequality. Ann. Math. 48(2), 441–471 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gehring F.W.: Topics in quasiconformal mappings.In: Proceedings of the International Congress of Mathematicians, Vol. 1, 2, pp. 62–80. Berkeley, California (1986)

  16. Gehring, F.W., Väisälä, J.: The coefficients of quasiconformality of domains in space. Acta Math. 114, 1–70 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  17. Heinonen, J., Koskela, P.: \(A_\infty \)-condition for the Jacobian of a quasiconformal mapping. Proc. Am. Math. Soc. 120(2), 535–543 (1994)

    MathSciNet  MATH  Google Scholar 

  18. Herron, D.A., Koskela, P.: Sobolev extension and quasiconformal circle domains. J. Anal. Math. 57, 172–202 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Horgan, C.O.: Korn’s inequalities and their applications in continuum mechanics. SIAM Rev. 37, 491–511 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Horgan, C.O., Payne, L.E.: On inequalities of Korn, Friedrichs and Babuška–Aziz. Arch. Ration. Mech. Anal. 82, 165–179 (1983)

    Article  MATH  Google Scholar 

  21. Jiang, R., Kauranen, A.: Korn inequality on irregular domains. J. Math. Anal. Appl. 423, 41–59 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jiang, R., Kauranen, A., Koskela, P.: Solvability of the divergence equation implies John via Poincaré inequality. Nonlinear Anal. 101, 80–88 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. John, F.: Rotation and strain. Comm. Pure Appl. Math. 4, 391–414 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jones, P.W.: Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math. 147, 71–88 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kondratiev, V.A., Oleinik, O.A.: On Korn’s inequalities. C. R. Acad. Sci. Paris Sér. I Math. 308, 483–487 (1989)

    MathSciNet  MATH  Google Scholar 

  26. Koskela P. Lectures on planar Sobolev extension domains, preprint

  27. Koskela, P.: Removable sets for Sobolev spaces. Ark. Mat. 37(2), 291–304 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Martio, O., Sarvas, J.: Injectivity theorems in plane and space. Ann. Acad. Sci. Fenn. Ser. A I Math 4, 383–401 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mosolov, P.P., Mjasnikov, V.P.: A proof of Korn’s inequality. Dokl. Akad. Nauk SSSR 201, 36–39 (1971)

    MathSciNet  Google Scholar 

  30. Nečas, J.: Les méthodes directes en théorie des équations elliptiques (French). In: Masson et Cie (eds) Paris, Academia, Editeurs, Prague (1967)

  31. Nitsche, J.A.: On Korn’s second inequality. RAIRO J. Numer. Anal. 15, 237–248 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  32. Näkki, R., Väisälä, J.: John disks. Expos. Math. 9, 3–43 (1991)

    MathSciNet  MATH  Google Scholar 

  33. Ornstein, D.: A non-equality for differential operators in the \(L_1\) norm. Arch. Ration. Mech. Anal. 11, 40–49 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  34. Russ, E.: A survey about the equation \({\rm div}{\mathbf{u}}=f\) in bounded domains of \(\mathbb{R}^n\). Vietnam J. Math. 41, 369–381 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Stein, E.: Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30. Princeton University Press, Princeton (1970)

    Google Scholar 

  36. Tiero, A.: On inequalities of Korn, Friedrichs, Magenes–Stampacchia–Nec̆as and Babus̆ka–Aziz. Z. Anal. Anwend. 20, 215–222 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ting, T.W.: Generalized Korn’s inequalities. Tensor 25, 295–302 (1972)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Pekka Koskela for suggesting this topic and for valuable discussions. R. Jiang was partially supported by National Natural Science Foundation of China (Nos. 11671039, 11626250). The research of A. Kauranen has been supported by the Academy of Finland via the Centre of Excellence in Analysis and Dynamics Research (Project No. 271983).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renjin Jiang.

Additional information

Communicated by L. Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, R., Kauranen, A. Korn’s inequality and John domains. Calc. Var. 56, 109 (2017). https://doi.org/10.1007/s00526-017-1196-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1196-7

Mathematics Subject Classification

Navigation