Skip to main content
Log in

On the collapse and concentration of Bose–Einstein condensates with inhomogeneous attractive interactions

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider two-dimensional Bose–Einstein condensates with inhomogeneous attractive interactions \(0<m(x)\le 1\), which can be described by the Gross–Pitaevskii functional. We prove that minimizers exist if and only if the interaction strength \(a\) satisfies \(a < a^*= \Vert Q\Vert _2^2\), where \(Q\) is the unique positive radial solution of \(\Delta u-u+u^3=0\) in \({\mathbb {R}}^2\). The concentration behavior and symmetry breaking of minimizers as \(a\) approaches \(a^*\) are also analyzed, where all the mass concentrates at a global minimum point \(x_0\) of the trapping potential \(V(x)\), provided that \(x_0\) is also a global maximum point of \(m(x)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev spaces, 2nd edn. Pure and Applied Mathematics, vol. 140. Elsevier/Academic Press, Amsterdam (2003)

  2. Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E., Cornell, E.A.: Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)

    Article  Google Scholar 

  3. Belmonte-Beitia, J., Perez-Garcia, V.M., Vekslerchik, V., Torres, P.J.: Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities. Phys. Rev. Lett. 98, 064102 (2007)

    Article  Google Scholar 

  4. Bloch, I., Dalibard, J., Zwerger, W.: Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008)

    Article  Google Scholar 

  5. Bradley, C.C., Sackett, C.A., Tollett, J.J., Hulet, R.G.: Evidence of Bose–Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett. 75, 1687 (1995). (Erratum. Phys. Rev. Lett. 79, 1170 (1997))

    Article  Google Scholar 

  6. Bradley, C.C., Sackett, C.A., Hulet, R.G.: Bose–Einstein condensation of lithium: observation of limited condensate number. Phys. Rev. Lett. 78, 985 (1997)

    Article  Google Scholar 

  7. Cazenave, T.: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics 10. Courant Institute of Mathematical Science/AMS, New York (2003)

  8. Cooper, N.R.: Rapidly rotating atomic gases. Adv. Phys. 57, 539–616 (2008)

    Article  Google Scholar 

  9. Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999)

    Article  Google Scholar 

  10. Davis, K.B., Mewes, M.O., Andrews, M.R., van Druten, N.J., Durfee, D.S., Kurn, D.M., Ketterle, W.: Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995)

    Article  Google Scholar 

  11. Fetter, A.L.: Rotating trapped Bose–Einstein condensates. Rev. Mod. Phys. 81, 647 (2009)

    Article  Google Scholar 

  12. Gidas, B., Ni,. W.M., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in \({\mathbb{R}}^n\). In: Mathematical Analysis and Applications Part A, Adv. in Math. Suppl. Stud., vol. 7, pp. 369–402. Academic Press, New York (1981)

  13. Guo, Y.J., Seiringer, R.: On the mass concentration for Bose–Einstein condensates with attractive interactions. Lett. Math. Phys. 104, 141–156 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guo, Y.J., Zeng, X.Y., Zhou, H.S.: Energy estimates and symmetry breaking in attactive Bose–Einstein condensates with ring-shaped potentials. arXiv: 1406.7479 (2014)

  15. Huepe, C., Metens, S., Dewel, G., Borckmans, P., Brachet, M.E.: Decay rates in attractive Bose–Einstein condensates. Phys. Rev. Lett. 82, 1616–1619 (1999)

    Article  Google Scholar 

  16. Kagan, Y., Muryshev, A.E., Shlyapnikov, G.V.: Collapse and Bose–Einstein condensation in a trapped Bose gas with nagative scattering length. Phys. Rev. Lett. 81, 933–937 (1998)

    Article  Google Scholar 

  17. Kwong, M.K.: Uniqueness of positive solutions of \(\Delta u-u+u^p=0\) in \({\mathbb{R}}^N\). Arch. Ration. Mech. Anal. 105, 243–266 (1989)

  18. Li, Y., Ni, W.M.: Radial symmetry of positive solutions of nonlinear elliptic equations in \({\mathbb{R}}^n\). Commun. Partial Differ. Equ. 18, 1043–1054 (1993)

  19. Lieb, E.H., Loss, M.: Analysis, Graduate Studies in Mathematics 14, 2nd edn. American Mathematical Society, Providence (2001)

    Google Scholar 

  20. Lieb, E.H., Seiringer, R.: Proof of Bose–Einstein condensation for dilute trapped gases. Phys. Rev. Lett. 88, 170409 (2002)

  21. Lieb, E.H., Seiringer, R., Solovej, J.P., Yngvason, J.: The Mathematics of the Bose Gas and its Condensation, Oberwolfach Seminars. Birkhäuser Verlag, Basel (2005)

    MATH  Google Scholar 

  22. Lieb, E.H., Seiringer, R., Yngvason, J.: Bosons in a trap: a rigorous derivation of the Gross–Pitaevskii energy functional. Phys. Rev. A 61, 043602 (2000)

  23. Lieb, E.H., Seiringer, R., Yngvason, J.: A rigorous derivation of the Gross–Pitaevskii energy functional for a two-dimensional Bose gas. Comm. Math. Phys. 224, 17–31 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Maeda, M.: On the symmetry of the ground states of nonlinear Schrödinger equation with potential. Adv. Nonlinear Stud. 10, 895–925 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ni, W.-M., Takagi, I.: On the shape of least-energy solutions to a semilinear Neumann problem. Comm. Pure Appl. Math. 44, 819–851 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. Okazawa, N.: An \(L^p\) theory for Schrödinger operator with nonnegative potentails. J. Math. Soc. Jpn. 36, 675–688 (1984)

    Article  MATH  Google Scholar 

  27. Ruprecht, P.A., Holland, M.J., Burnett, K.: Time-dependent solution of the nonlinear Schrödinger equation for Bose-condensed trapped neutral atoms. Phys. Rev. A 51, 4704–4711 (1995)

    Article  Google Scholar 

  28. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press, New York (1978)

  29. Sackett, C.A., Stoof, H.T.C., Hulet, R.G.: Growth and collapse of a Bose–Einstein condensate with attractive interactions. Phys. Rev. Lett. 80, 2031 (1998)

    Article  Google Scholar 

  30. Wang, X.F.: On concentration of positive bound states of nonlinear Schrödinger equations. Commun. Math. Phys. 153, 229–244 (1993)

    Article  MATH  Google Scholar 

  31. Weinstein, M.I.: Nonlinear Schrödinger equations and sharp interpolations estimates. Commun. Math. Phys. 87, 567–576 (1983)

    Article  MATH  Google Scholar 

  32. Zhang, J.: Stability of attractive Bose–Einstein condensates. J. Stat. Phys. 101, 731–746 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. Robert Seiringer for his fruitful discussions on the subject. The authors would also like to thank the referee for the thorough review and helpful comments which helped us revise and improve this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujin Guo.

Additional information

Communicated by A. Malchiodi.

Y. B. Deng is partially supported by NSFC Grant No. 11371160, as well as a program for Changjiang Scholars and Innovative Research Team in University No. IRT13066. Y. J. Guo is partially supported by NSFC Grant No. 11322104, as well as the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Guo, Y. & Lu, L. On the collapse and concentration of Bose–Einstein condensates with inhomogeneous attractive interactions. Calc. Var. 54, 99–118 (2015). https://doi.org/10.1007/s00526-014-0779-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-014-0779-9

Mathematics Subject Classification

Navigation