Skip to main content
Log in

Bipolar \(\delta\)-equal complex fuzzy concept lattice with its application

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Recently, bipolar as well as vague concept lattice visualization is introduced for precise representation of inconsistency and incompleteness in data sets based on its acceptation and rejection part simultaneously. In this process, a problem is addressed while measuring the periodic fluctuation in bipolar information at the given phase of time. This changes in human cognition used coexist often in our daily life where the sentiments (i.e., love or hatred) for anyone may change several times from morning to evening office time. In this case precise representation of this type of bipolar information and measuring its pattern is a major issue for the researchers. To deal with this problem, the current paper proposes three methods for adequate representation of bipolar complex data set using the calculus of complex fuzzy matrix, \(\delta\)-equality and the calculus of granular computing, respectively. Hence, the proposed method provides an umbrella way to navigate or decompose the bipolar complex data sets and their semantics using an illustrative example. The results obtained from the proposed methods are also compared to validate the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

(X, Y, \(\tilde{R}\)):

Context-K

\(\wedge\) :

Infimum

\(\vee\) :

Supremum

Z :

Set of universe

\(\delta\) :

Granulation

d :

Distance

\(\hbox {Av}_d\) :

Average distance

I :

Bipolar fuzzy set of vertices

J :

Bipolar fuzzy set of edges

Z :

Complex fuzzy set

G :

Bipolar graph

n :

Total number of attributes

n :

Total number of objects

\(\otimes\) :

Multiplication

\(\rightarrow\) :

Residuum

X :

Objects

Y :

Attributes

\(\tilde{R}\) :

A map from \(X \times Y\) to L

L :

Scale of truth degree

L :

Residuated lattice

a, b, c :

Elements in L

A :

Set of objects

B :

Set of attributes

\(C_1\) :

Concept

CG:

Complex granules

\(\mu ^{\mathrm{P}}(z)\) :

Position information

\(\mu ^{\mathrm{N}}(z)\) :

Negative information

(\(\uparrow , \downarrow\)):

Galois connection

\(\prod\) :

Projection operator

\(L^{\tiny {\textit{X}}}\) :

L-set of objects

\(L^{\tiny {\textit{Y}}}\) :

L-set of attributes

\(\bigcup\) :

Union

\(\bigcap\) :

Intersection

References

  1. Al-Qudah Y, Hassan N (2017) Operations on complex multi-fuzzy sets. J Intell Fuzzy Syst 33(3):1527–1540

    Article  MATH  Google Scholar 

  2. Akram M (2011) Bipolar fuzzy graphs. Inf Sci 181(24):5548–5564

    Article  MathSciNet  MATH  Google Scholar 

  3. Akram M (2013) Bipolar fuzzy graphs with applications. Knowl Based Syst 39:1–8

    Article  MATH  Google Scholar 

  4. Ulazeez A, Alkouri M, Salleh AR (2014) Complex fuzzy soft multisets. The 2014 UKM FST Postgraduate Colloquium. In: Proceddings of 2014 AIP conference, vol 1614, pp 955–961. https://doi.org/10.1063/1.4895330

  5. Ali M, Smarandache F (2017) Complex neutrosophic set. Neural Comput Appl 28(7):1817–1834

    Article  Google Scholar 

  6. Antoni L, Krajči S, Krídlo O, Macek B, Piskova L (2014) On heterogeneous formal contexts. Fuzzy Sets Syst 234:22–33

    Article  MathSciNet  MATH  Google Scholar 

  7. Aswani Kumar C, Srinivas S (2010) Concept lattice reduction using fuzzy K-means clustering. Expert Syst Appl 37(3):2696–2704

    Article  MATH  Google Scholar 

  8. Aswani Kumar C, Singh PK (2014) Knowledge representation using formal concept analysis: a study on concept generation. In: Tripathy BK, Acharjya DP (eds) Global trends in knowledge representation and computational intelligence. IGI Global Publishers, New York, pp 306–336

    Google Scholar 

  9. Aswani Kumar C, Sm D, Vieira NJ (2015) Knowledge reduction in formal contexts using non-negative matrix factorization. Math Comput Simul 109:46–63

    Article  MathSciNet  Google Scholar 

  10. Kumar CA, Ishwarya MS, Loo CK (2016) Formal concept analysis approach to cognitive functionalities of bidirectional associative memory. Biol Inspired Cogn Architect 12:20–33

    Article  Google Scholar 

  11. Berry A, Sigayret A (2004) Representing concept lattice by a graph. Discrete Appl Math 144:27–42

    Article  MathSciNet  MATH  Google Scholar 

  12. Bloch I (2011) Lattices of fuzzy sets and bipolar fuzzy sets, and mathematical morphology. Inf Sci 181(10):2002–2015

    Article  MathSciNet  MATH  Google Scholar 

  13. Broumi S, Deli I, Smarandache F (2015) N-valued interval neutrosophic sets and their application in medical diagnosis. Crit Rev 10:46–69

    Google Scholar 

  14. Broumi S, Smarandache F, Talea M, Bakali A (2016) An introduction to bipolar single valued neutrosophic graph theory. Appl Mech Mater 841:184–191

    Article  Google Scholar 

  15. Broumi S, Talea M, Bakali A, Smarandache F (2016) On bipolar single valued neutrosophic graphs. J New Theory 11:84–102

    Google Scholar 

  16. Burusco A, Fuentes-Gonzalez R (1994) The study of the L-fuzzy concept lattice. Math Soft Comput 1(3):209–218

    MathSciNet  MATH  Google Scholar 

  17. Burusco A, Fuentes-Gonzales R (2001) The study on interval-valued contexts. Fuzzy Sets Syst 121(3):439–452

    Article  MathSciNet  MATH  Google Scholar 

  18. Carpineto C, Romano G (2004) Concept data analysis: theory and application. Wiley, Hoboken 2004

    Book  MATH  Google Scholar 

  19. Deli I, Ali M, Smarandache F (2015) Bipolar neutrosophic sets and their application based on multi-criteria decision making problems. In: Proceedings of Advanced Mechatronic Systems (ICAMechS), pp 249–254

  20. Dick S (2005) Toward complex fuzzy logic. IEEE Trans Fuzzy Syst 13(3):405–414

    Article  MathSciNet  Google Scholar 

  21. Dick S, Yager RR, Yazdanbakhsh O (2016) On Pythagorean and complex fuzzy set operations. IEEE Trans Fuzzy Syst 24:1009–1021

    Article  Google Scholar 

  22. Djouadi Y, Prade H (2009) Interval-valued fuzzy formal concept analysis. In: Rauch et al (eds) ISMIS 2009, LNAI, vol 5722. Springer, Berlin, pp 592–601

  23. Dubois D, Prade H (2012) Gradualness, uncertainty and bipolarity: making sense of fuzzy sets. Fuzzy Sets Syst 192:3–24

    Article  MathSciNet  MATH  Google Scholar 

  24. Dubois D, Prade H (2015) Formal concept analysis from the standpoint of possibility theory. In: Proceedings of ICFCA 2015, LNAI, vol 9113, pp 21–38

  25. Franco C, Montero J, Rodriguez JT (2013) A fuzzy and bipolar approach to preference modeling with application to need and desire. Fuzzy Sets Syst 214:20–34

    Article  MathSciNet  Google Scholar 

  26. Goguen JA (1967) L-fuzzy sets. J Math Anal Appl 18:145–174

    Article  MathSciNet  MATH  Google Scholar 

  27. Gajdos P, Snasel V (2014) A new FCA algorithm enabling analyzing of complex and dynamic data sets. Soft Comput 18(4):683–694

    Article  Google Scholar 

  28. Ganter B, Wille R (1999) Formal concept analysis: mathematical foundation. Springer, Berlin 1999

    Book  MATH  Google Scholar 

  29. Kang X, Li D, Wang S, Qu K (2012) Formal concept analysis based on fuzzy granularity base for different granulation. Fuzzy Sets Syst 203:33–48

    Article  MathSciNet  MATH  Google Scholar 

  30. Lee KM (2000) Bipolar-valued fuzzy sets and their basic operations: In: Proceedings of the International Conference, Bangkok 2000, Thailand, pp 307–317

  31. Li C, Chan FT (2012) Knowledge discovery by an intelligent approach using complex fuzzy sets. Lect Notes Comput Sci 7196:320–329

    Article  Google Scholar 

  32. Li JH, Mei C, Xu W, Qian Y (2015) Concept learning via granular computing: a cognitive viewpoint. Inf Sci 298:447–467

    Article  MathSciNet  MATH  Google Scholar 

  33. Li JH, Mei C, Lv Y (2013) Incomplete decision contexts: approximate concept construction rule acquisition and knowledge reduction. Int J Approx Reason 54(1):191–207

    Article  MathSciNet  MATH  Google Scholar 

  34. Mao H (2017) Representing attribute reduction and concepts in concept lattice using graphs. Soft Comput 21(24):7293–7311

    Article  MATH  Google Scholar 

  35. Pedrycz W (1998) Shadowed sets: representing and processing fuzzy sets. IEEE Trans Syst Man Cybern PartB Cybern 28:103–109

    Article  Google Scholar 

  36. Pedrycz W (2013) Granular computing analysis and design of intelligent systems. CRC Press, Boca Raton 2013

    Book  Google Scholar 

  37. Pollandt S (1997) Fuzzy Begriffe. Springer, Berlin 1997

    Book  MATH  Google Scholar 

  38. Singh PK, Aswani Kumar C (2012) A method for decomposition of fuzzy formal context. Procedia Eng 38:1852–1857

    Article  Google Scholar 

  39. Singh PK, Aswani Kumar C (2014a) A note on bipolar fuzzy graph representation of concept lattice. Int J Comput Sci Math 5(4):381–393

    Article  MathSciNet  MATH  Google Scholar 

  40. Singh PK, Aswani Kumar C (2014b) Bipolar fuzzy graph representation of concept lattice. Inf Sci 288:437–448

    Article  MathSciNet  MATH  Google Scholar 

  41. Singh PK, Gani A (2015) Fuzzy concept lattice reduction using Shannon entropy and Huffman coding. J Appl Non-Classic Log 25(2):101–119

    Article  MathSciNet  MATH  Google Scholar 

  42. Singh PK, Kumar CA, Gani A (2016) A comprehensive survey on formal concept analysis and its research trends. Int J Appl Math Comput Sci 26(2):495–516

    Article  MathSciNet  MATH  Google Scholar 

  43. Singh PK (2016) Processing linked formal fuzzy context using non-commutative composition. Inst Integr Omics Appl Biotechnol (IIOAB) J 7(5):21–32

    Google Scholar 

  44. Singh PK (2017a) Three-way fuzzy concept lattice representation using neutrosophic set. Int J Mach Learn Cybern 8(1):69–79

    Article  Google Scholar 

  45. Singh PK (2017b) Complex vague set based concept lattice. Chaos Solitons Fractals 96:145–153

    Article  MATH  Google Scholar 

  46. Singh PK (2018a) Interval-valued neutrosophic graph representation of concept lattice and its (\(\alpha, \beta, \gamma\))-decomposition. Arab J Sci Eng 43(2):723–740. https://doi.org/10.1007/s13369-017-2718-5

    Article  Google Scholar 

  47. Singh PK (2018b) \(m\)-polar fuzzy graph representation of concept lattice. Eng Appl Artif Intell 67:52–62. https://doi.org/10.1016/j.engappai.2017.09.011

    Article  Google Scholar 

  48. Prem Kumar S (2018) Similar vague concepts selection using their Euclidean distance at different granulation. Cogn Comput. https://doi.org/10.1007/s12559-017-9527-8

    Article  Google Scholar 

  49. Ramot D, Friedman M, Langholz G, Kandel A (2003) Complex fuzzy logic. IEEE Trans Fuzzy Syst 11(4):450–461

    Article  Google Scholar 

  50. Ramot D, Milo R, Friedman M, Kandel A (2005) Complex fuzzy sets. IEEE Trans Fuzzy Syst 10(2):171–186

    Article  Google Scholar 

  51. Selvachandrana G, Maji PK, Abed IE, Salleh AR (2016) Relations between complex vague soft sets. Appl Soft Comput 47:438–448

    Article  Google Scholar 

  52. Selvachandran G, Maji PK, Abed IE, Salleh AR (2016) Complex vague soft sets and its distance measures. J Intell Fuzzy Syst 31:55–68

    Article  MATH  Google Scholar 

  53. Suleman K, Abdullah G, Wahab ABD, Prem Kumar S (2017) Feature selection of Denial-of-Service attacks using entropy and granular computing. Arab J Sci Eng. https://doi.org/10.1007/s13369-017-2634-8

    Article  Google Scholar 

  54. Tamir DE, Rishe ND, Kandel A (2015) Complex fuzzy sets and complex fuzzy logic: an overview of theory and applications. In: Tamir DE et al (eds) Fifty years of fuzzy logic and its applications. Springer, Cham, pp 661–681

    Chapter  MATH  Google Scholar 

  55. Ward M, Dilworth RP (1939) Residuated lattices. Trans Am Math Soc 45:335–354

    Article  MathSciNet  MATH  Google Scholar 

  56. Wille R (1982) Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival I (eds) Ordered sets. NATO Advanced Study Institutes Series, vol 83, pp 445–470

  57. Wu WZ, Leung Y, MI JS (2009) Granular computing and knowledge reduction in formal context. IEEE Trans Knowl Data Eng 21(10):1461–1474

    Article  Google Scholar 

  58. Yang HL, Li SG, Wang WH, Lu Y (2013) Notes on “Bipolar fuzzy graphs”. Inf Sci 242:113–121

    Article  MathSciNet  MATH  Google Scholar 

  59. Yazdanbakhsh O, Dick S (2015) Time-series forecasting via complex fuzzy logic. In: Sadeghian A, Tahayori H (eds) Front Higher Order Fuzzy Sets. Springer, New York, pp 147–165 2015

    Google Scholar 

  60. Yazdanbakhsh O, Dick S (2017) A systematic review of complex fuzzy sets and logic. Fuzzy Sets Syst. https://doi.org/10.1016/j.fss.2017.01.010

    Article  MATH  Google Scholar 

  61. Yao YY (2004) Granular computing. In: Proceedings of the 4th Chinese National Conference on Rough Sets and Soft Computing, Computer Science (Ji Suan Ji Ke Xue), vol 31, pp 1–5

  62. Zadeh LA (1975) The concepts of a linguistic and application to approximate reasoning. Inf Sci 8:199–249

    Article  MathSciNet  MATH  Google Scholar 

  63. Zadeh LA (2008) Toward human level machine intelligence? Is it achievable? The need for a paradigm shift. IEEE Comput Intell Mag 3(3):11–22

    Article  Google Scholar 

  64. Zadeh LA (2011) A note on Z-numbers. Inf Sci 181:2923–2932

    Article  MATH  Google Scholar 

  65. Zadrozny S, Kacprzyk J, De Tre G (2012) Bipolar queries in textual information retrieval: a new perspective. Inf Process Manag 48(3):390–398

    Article  Google Scholar 

  66. Zhang G, Dillon TS, Cai KY, Ma J, Lu J (2009) Operation properties and \(\delta\)-equalities of complex fuzzy sets. Int J Approx Reason 50:1227–1249

    Article  MathSciNet  MATH  Google Scholar 

  67. Zhao ZQ, Ma SQ (2016) Complex fuzzy matrix and its convergence problem research. In: Cao et al (eds) Fuzzy Syst Oper Res Manag. Springer, Cham, pp 157–162

    Chapter  Google Scholar 

  68. Zhang WR (1994) Bipolar fuzzy sets and relations: a computational framework for cognitive modeling and multiagent decision analysis. In: Proceedings of IEEE Conference 1994, pp 305–309

  69. Zhang WR, Zhang L (2004) Yin-Yang bipolar logic and bipolar fuzzy logic. Inf Sci 165(3–4):265–287

    Article  MathSciNet  MATH  Google Scholar 

  70. Zhang WX, Ma JM, Fan SQ (2007) Variable threshold concept lattices. Inf Sci 117(2):4883–4892

    Article  MathSciNet  MATH  Google Scholar 

  71. Zhang WR (2017) Programming the mind and decrypting the universe—a bipolar quantum-neuro-fuzzy associative memory model for quantum cognition and quantum intelligence. In: Proceedings of 2017 International Joint Conference on Neural Networks (IJCNN). https://doi.org/10.1109/IJCNN.2017.7965986

Download references

Acknowledgements

The author is grateful to the anonymous reviewers and the Editor-in-Chief for their valuable remarks on partial improvement of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prem Kumar Singh.

Ethics declarations

Conflict of interest

Author declares that he has no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P.K. Bipolar \(\delta\)-equal complex fuzzy concept lattice with its application. Neural Comput & Applic 32, 2405–2422 (2020). https://doi.org/10.1007/s00521-018-3936-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-3936-9

Keywords

Navigation