Skip to main content
Log in

Feature selection via a novel chaotic crow search algorithm

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Crow search algorithm (CSA) is a new natural inspired algorithm proposed by Askarzadeh in 2016. The main inspiration of CSA came from crow search mechanism for hiding their food. Like most of the optimization algorithms, CSA suffers from low convergence rate and entrapment in local optima. In this paper, a novel meta-heuristic optimizer, namely chaotic crow search algorithm (CCSA), is proposed to overcome these problems. The proposed CCSA is applied to optimize feature selection problem for 20 benchmark datasets. Ten chaotic maps are employed during the optimization process of CSA. The performance of CCSA is compared with other well-known and recent optimization algorithms. Experimental results reveal the capability of CCSA to find an optimal feature subset which maximizes the classification performance and minimizes the number of selected features. Moreover, the results show that CCSA is superior compared to CSA and the other algorithms. In addition, the experiments show that sine chaotic map is the appropriate map to significantly boost the performance of CSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abdullah A, Enayatifa R, Lee M (2012) A hybrid genetic algorithm and chaotic function model for image encryption. Journal of Electronics and Communication 66(1):806–816

    Google Scholar 

  2. Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169:1–12

    Article  Google Scholar 

  3. Bache K, Lichman M UCI Machine learning repository. http://archive.ics.uci.edu/ml. Retrieved July 19, 2016

  4. Blum A, Langley P (1997) Selection of relevant features and examples in machine learning. Artif Intell 97:245–271

    Article  MathSciNet  MATH  Google Scholar 

  5. Cai JJ, Ma XQ, Li X (2007) Chaotic ant swarm optimization to economic dispatch. Electr Power Syst Res 77(10):1373–1380

    Article  Google Scholar 

  6. Chen CH (2014) A hybrid intelligent model of analyzing clinical breast cancer data using clustering techniques with feature selection. Appl Soft Comput 20:4–14

    Article  Google Scholar 

  7. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18

    Article  Google Scholar 

  8. Emary E, Zawbaa H, Hassanien A (2016) Binary gray wolf optimization approaches for feature selection. Neurocomputing 172:371–381

    Article  Google Scholar 

  9. Figueiredo E, Ludermir T, Bastos C (2016) Many objective particle swarm optimization. Inf Sci 374:115–134

    Article  Google Scholar 

  10. Gadat S, Younes L (2007) A stochastic algorithm for feature selection in pattern recognition. Journal of Machine Learning 8:509–547

    MATH  Google Scholar 

  11. Gai-Ge W, Suash D, Leandro D, Coelho S (2015) Elephant herding optimization 3rd international symposium on computational and business intelligence (ISCBI), Bali, pp 1–5

    Google Scholar 

  12. Gandomi A, Yang X, Alavi A (2011) Mixed variable structural optimization using firefly algorithm. Comput Struct 89:2325–2336

    Article  Google Scholar 

  13. Gandomi AH, Yang XS, Talatahari S, Alavi AH (2013) Firefly algorithm with chaos. Commun Nonlinear Sci Numer Simul 18(1):89–98

    Article  MathSciNet  MATH  Google Scholar 

  14. Geem Z, Kim J, Loganathan G (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68

    Article  Google Scholar 

  15. Goldberg D (1989) Genetic algorithms in search, optimization and machine learning, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA. ISBN 0201157675

    MATH  Google Scholar 

  16. Golub TR (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531–537

    Article  Google Scholar 

  17. Guyon I, Elisseeff A (2003) An introduction to variable and attribute selection. Machine Learning Research 3:1157–1182

    MATH  Google Scholar 

  18. Hafez AI, Zawbaa HM, Emary E, Mahmoud HA, Hassanien AE (2015) An innovative approach for feature selection based on chicken swarm optimization 7th international conference of soft computing and pattern recognition (SoCPaR), pp 19–24

    Google Scholar 

  19. Hafez AI, Zawbaa HM, Emary E, Hassanien AE (2016) Sine cosine optimization algorithm for feature selection International symposium on inovations in intelligent systems and applications (INISTA), pp 1–5

    Google Scholar 

  20. He YY, Zhou JZ, Zhou XQ (2009) Comparison of different chaotic maps in particle swarm optimization algorithm for long term cascaded hydroelectric system scheduling. Chaos Solitons Fractals 42:3169–1376

    Article  MATH  Google Scholar 

  21. He YY, Zhou JZ, Li CS (2008) A precise chaotic particle swarm optimization algorithm based on improved tent map. ICNC 7:569–573

    Google Scholar 

  22. He Y, Zhou J, Lu N, Qin H, Lu Y (2010) Differential evolution algorithm combined with chaotic pattern search. Kybernetika 46(4):684–696

    MathSciNet  MATH  Google Scholar 

  23. Jia H, Ding S, Du M, Xue Y (2016) Approximate normalized cuts without Eigen-decomposition. Inf Sci 374:135–150

    Article  Google Scholar 

  24. Jian L, Li J, Shu K, Liu H (2016) Multi-label informed feature selection Proceedings of the twenty-fifth international joint conference on artificial intelligence, pp 1627–1633

    Google Scholar 

  25. Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech 213:267–289

    Article  MATH  Google Scholar 

  26. Kennedy J, Eberhart R (1995) Particle swarm optimization IEEE international conference on neural networks, vol 4, pp 1942–1948

  27. Kohavi R, John G (1997) Wrappers for feature subset selection. Artif Intell 97(1):273–324

    Article  MATH  Google Scholar 

  28. Lei Y, Huan L (2003) Feature selection for high-dimensional data: a fast correlation-based filter solution Proceedings of the 20th international conference on machine learning (ICML-03), pp 856–863

    Google Scholar 

  29. Li B, Jiang W (1998) Optimizing complex functions by chaos search. Journal of Cybernetics and Systems 29:409–419

    Article  MATH  Google Scholar 

  30. Li X, Zhang J, Yin M (2013) Animal migration optimization: an optimization algorithm inspired by animal migration behavior, Neural Comput Applic, pages=1–11

  31. Lin S, Ying KS-C, Lee Z (2008) Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Syst Appl 35(4):1817–1824

    Article  Google Scholar 

  32. Meng X, Gao XZ, Lu L, Liu Y, Zhang H (2016) A new bio-inspired optimisation algorithm: bird swarm algorithm. J Exp Theor Artif Intell 28(4):673–687

    Article  Google Scholar 

  33. Mingjun J, Tang HW (2004) Application of chaos in simulated annealing optimization. Chaos Solitons Fractals 21:933–941

    Article  MATH  Google Scholar 

  34. Mirjalili S, Seyed M, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  35. Ng K, Liu H (2000) Customer retention via data mining. AI Review 14:569–590

    MATH  Google Scholar 

  36. Repinsek M, Liu S, Mernik L (2012) A note on teaching–learning-based optimization algorithm. Inf Sci 212:79–93

    Article  Google Scholar 

  37. Rui Y, Huang TS, Chang S (1999) Image retrieval: current techniques, promising directions and open issues. J Vis Commun Image Represent 10:39–62

    Article  Google Scholar 

  38. Sarafrazi S (2013) Facing the classification of binary problems with a gsa-svm hybrid system. Math Comput Model 57:270–278

    Article  MathSciNet  MATH  Google Scholar 

  39. Saremi S, Mirjalili S, Lewis A (2014) Biogeography-based optimization with chaos. Neural Comput & Applic 25(5):1077–1097

    Article  Google Scholar 

  40. Sayed G, Darwish A, Hassanien A, Pan S (2016) Breast cancer diagnosis approach based on meta-heuristic optimization algorithm inspired by bubble-net hunting strategy of whales 10th international conference on genetic and evolutionary computing (ICGEC), Fujian, China, pp 306–313

    Google Scholar 

  41. Sayed S, Nabil E, Badr A (2016) A binary clonal flower pollination algorithm for feature selection. Pattern Recogn Lett 77:21–27

    Article  Google Scholar 

  42. Schiezaro M, Pedrini H (2013) Data feature selection based on artificial bee colony algorithm. EURASIP Journal on Image and Video Processing 2013(1):1–8

    Article  Google Scholar 

  43. Shilaskar S, Ghatol A (2013) Feature selection for medical diagnosis: evaluation for cardiovascular diseases. Expert Syst Appl 40(10):4146–4153

    Article  Google Scholar 

  44. Storn R, Price K (1997) Differential evolution -a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  45. Tavazoei MS, Haeri M (2007) Comparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithms. Appl Math Comput 187:1076–1085

    MathSciNet  MATH  Google Scholar 

  46. Unler A, Murat A (2010) A discrete particle swarm optimization method for feature selection in binary classification problems. Journal of Operation Research 206:528–539

    Article  MATH  Google Scholar 

  47. Wanga G, Guo L, Gandomi A, Hao G, Wangb H (2014) Chaotic krill herd algorithm. Inf Sci 274:17–34

    Article  MathSciNet  Google Scholar 

  48. Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1:80–83

    Article  Google Scholar 

  49. Yuan XH, Yuan YB, Zhang YC (2002) A hybrid chaotic genetic algorithm for short-term hydro system scheduling. Math Comput Simul 59(4):319–327

    Article  MathSciNet  MATH  Google Scholar 

  50. Xiang T, Liao XF, Wong KW (2007) Comparison of different chaotic maps in particle swarm optimization algorithm for long term cascaded hydroelectric system scheduling. Appl Math Comput 190:1637–1645

    MathSciNet  Google Scholar 

  51. Yang DX, Li G, Cheng GD (2007) On the efficiency of chaos optimization algorithms for global optimization. Chaos Solitons Fractals 34:1366–1375

    Article  MathSciNet  Google Scholar 

  52. Yang Y, Pederson JO (1997) A comparative study on feature selection in text categorization Proceedings of the fourteenth international conference on machine learning, pp 412–420

    Google Scholar 

  53. Yu Z (2014) Hybrid clustering solution selection strategy. Pattern Recogn 47:3362–3375

    Article  Google Scholar 

  54. Yuan XF, Wang YN, Wu LH (2007) Pattern search algorithm using chaos and its application. Journal of Hunan University, Natural Sciences 34(9):30–33

    MATH  Google Scholar 

  55. Zawbaa H, Emary E, Parv B, Shaarawi M (2016) Feature selection approach based on moth-flame optimization algorithm IEEE congress on evolutionary computation, Vancouver, Canada, pp 24–29

    Google Scholar 

  56. Zhang H, Sun G (2002) Feature selection using tabu search method. Pattern Recogn 35:701–711

    Article  MATH  Google Scholar 

  57. Zhang L, Zhang CJ (2008) Hopf bifurcation analysis of some hyperchaotic systems with time-delay controllers. Kybernetika 44(1):35–42

    MathSciNet  MATH  Google Scholar 

  58. Zhang N, Ding S, Zhang J (2016) Multi layer elm-rbf for multi-label learning. Appl Soft Comput 43:535–545

    Article  Google Scholar 

  59. Zhang Q, Li Z, Zhou CJ, Wei XP (2013) Bayesian network structure learning based on the chaotic particle swarm optimization algorithm. Genet Mol Res 12(4):4468–4479

    Article  Google Scholar 

  60. Zhu ZL, Li SP, Yu H (2008) A new approach to generalized chaos synchronization based on the stability of the error system. Kybernetika 44(4):492–500

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gehad Ismail Sayed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Scientific Research Group in Egypt http://www.egyptscience.net

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayed, G.I., Hassanien, A.E. & Azar, A.T. Feature selection via a novel chaotic crow search algorithm. Neural Comput & Applic 31, 171–188 (2019). https://doi.org/10.1007/s00521-017-2988-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-2988-6

Keywords

Navigation