Skip to main content
Log in

A new facial expression recognition based on curvelet transform and online sequential extreme learning machine initialized with spherical clustering

  • Extreme Learning Machine and Applications
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, a novel algorithm is proposed for facial expression recognition by integrating curvelet transform and online sequential extreme learning machine (OSELM) with radial basis function (RBF) hidden node having optimal network architecture. In the proposed algorithm, the curvelet transform is firstly applied to each region of the face image divided into local regions instead of whole face image to reduce the curvelet coefficients too huge to classify. Feature set is then generated by calculating the entropy, the standard deviation and the mean of curvelet coefficients of each region. Finally, spherical clustering (SC) method is employed to the feature set to automatically determine the optimal hidden node number and RBF hidden node parameters of OSELM by aim of increasing classification accuracy and reducing the required time to select the hidden node number. So, the learning machine is called as OSELM-SC. It is constructed two groups of experiments: The aim of the first one is to evaluate the classification performance of OSELM-SC on the benchmark datasets, i.e., image segment, satellite image and DNA. The second one is to test the performance of the proposed facial expression recognition algorithm on the Japanese Female Facial Expression database and the Cohn-Kanade database. The obtained experimental results are compared against the state-of-the-art methods. The results demonstrate that the proposed algorithm can produce effective facial expression features and exhibit good recognition accuracy and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anderson K, McOwan PW (2006) A real-time automated system for recognition of human facial expressions. IEEE Trans Syst Man Cybern B Cybern 36:96–105

    Article  Google Scholar 

  2. Cohn I, Sebe N, Chen L, Garg A, Huang TS (2003) Facial expression recognition from video sequences: temporal and static modeling. Comput Vis Image Underst 91(1–2):160–187

    Article  Google Scholar 

  3. Zhang Y, Ji Q (2003) Facial expression understanding in image sequences using dynamic and active visual information fusion. IEEE International Conference on Computer Vision, vol 2. Nice, France, pp 113–118

    Google Scholar 

  4. Tian YL, Kanade T, Cohn JF (2005) In: Li SZ, Jain AK (eds) Handbook of face recognition. Springer, Heidelberg, pp 247–276

  5. Ekman P, Friesen WV (1971) Constant across cultures in the face and emotion. J Pers Soc Psychol 17(2):124–129

    Article  Google Scholar 

  6. Lajevardi SM, Hussain ZM (2010) Higher order orthogonal moments for invariant facial expression recognition. Digit Signal Process 20(6):1771–1779

    Article  Google Scholar 

  7. Lu X, Wang Y, Jain AK (2003) Combining classifiers for face recognition. Int Conf Multimed Expo 3:13–16

    Google Scholar 

  8. Donato G, Bartlett M, Hager J, Ekman P, Sejnowski T (1999) Classifying facial actions. IEEE Trans Pattern Anal Mach Intell 21(10):974–989

    Article  Google Scholar 

  9. Tian YL, Kanade T, Cohn J (2001) Recognizing action units for facial expression analysis. IEEE Trans Pattern Anal Mach Intell 23(2):97–115

    Article  Google Scholar 

  10. Zhen W, Huang TS (2003) Capturing subtle facial motions in 3d face tracking. Ninth IEEE Int Conf Comput Vis, vol 2. Nice, France, pp 1343–1350

    Chapter  Google Scholar 

  11. Lyons M, Akamatsu S, Kamachi M, Gyoba J (1998) Coding facial expressions with Gabor wavelets. In: IEEE 3rd international conference on automatic face and gesture recognition, pp 200–205

  12. Gu W, Xiang C, Venkatesh YV, Huang D, Lin H (2012) Facial expression recognition using radial encoding of local Gabor features and classifier synthesis. Pattern Recognit 45(1):80–91

    Article  Google Scholar 

  13. Uçar A (2013) Facial expression recognition based on significant face components using steerable pyramid transform. In: International conference on image processing, computer vision and pattern recognition, vol 2. Las Vegas, USA, pp 687–692

  14. Candes EJ, Donoho DL (2000) Curvelets—a surprisingly effective nonadaptive representation for objects with edges. Vanderbilt University Press, Nashville, TN

    Google Scholar 

  15. Mandal T, Wu JQM, Yuan Y (2009) Curvelet based face recognition via dimensional reduction. Signal Process 89(12):2345–2353

    Article  MATH  Google Scholar 

  16. Mohammed AA, Minhas R, Wu JQM, Sid-Ahmed MA (2011) Human face recognition based on multidimensional pca and extreme learning machine. Pattern Recognit 44(10–11):2588–2597

    Article  MATH  Google Scholar 

  17. Uçar A (2012) Color face recognition based on curvelet transform. In: International conference on image processing, computer vision and pattern recognition, vol 2. Las Vegas, USA, pp 561–566

  18. Shan C, Gong S, McOwan PW (2009) Facial expression recognition based on local binary patterns: a comprehensive study. Image Vis Comput 27(6):803–816

    Article  Google Scholar 

  19. Li ZS, Imai J, Kaneko M (2010) Facial expression recognition using facial–component–based bag of words and PHOG descriptors. J Inst Image Inform Telev En 64(2):230–236

    Google Scholar 

  20. Platt JA (1991) Resource-allocating network for function interpolation. Neural Comput 3(2):213–225

    Article  MathSciNet  Google Scholar 

  21. Lu Y, Sundararajan N, Saratchandran PA (1997) Sequential learning scheme for function approximation using minimal radial basis function (RBF) neural networks. Neural Comput 9(2):461–478

    Article  MATH  Google Scholar 

  22. Huang GB, Saratchandran P, Sundararajan N (2004) An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks. IEEE Trans Syst Man Cybern 34(6):2284–2292

    Article  Google Scholar 

  23. Yap KS, Lim CP, Abidin IZ (2008) A hybrid ART-GRNN online learning neural network with a ε-insensitive loss function. IEEE Trans Neural Netw 19(9):1641–1646

    Article  Google Scholar 

  24. Liang NY, Huang GB, Saratchandran P, Sundararajan N (2006) A fast and accurate online sequential learning algorithm for feedforward network. IEEE Trans Neural Netw 17(6):1411–1423

    Article  Google Scholar 

  25. Lan Y, Soh YC, Huang GB (2009) Ensemble of online sequential extreme learning machine. Neurocomputing 72(13–15):3391–3395

    Article  Google Scholar 

  26. Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1–3):489–501

    Article  Google Scholar 

  27. Demir Y, Uçar A (2003) Modelling and simulation with neural and fuzzy-neural networks of switched circuits. COMPEL: Int J Comput Math Electr Electro Eng 22(2):253–272

  28. Choi K, Toh KA, Byun H (2012) Incremental face recognition for large-scale social network services. Pattern Recognit 45(8):2868–2883

    Article  Google Scholar 

  29. Uçar A (2014) Color face recognition based on steerable pyramid transform and extreme learning machines. Sci World J 2014:1–45. Article Id: 628494

  30. Uçar A, Yavşan E (2014) Behavior learning of memristor—based chaotic circuit by extreme learning machines. Turk J Elec Eng Comp Sci. doi:10.3906/elk-1304-248

    Google Scholar 

  31. Li G, Liu M, Dong M (2010) A new online learning algorithm for structure-adjustable extreme learning machine. Comput Math Appl 60(3):377–389

    Article  MATH  MathSciNet  Google Scholar 

  32. Uçar A, Demir Y, Güzeliş C (2014) A penalty function method for designing efficient robust classifiers with input–space optimal separating surfaces. Turk J Elec Eng Comp Sci. doi:10.3906/elk-1301-190

  33. Haykin S (2008) Neural networks and learning machines, 3rd edn. Prentice Hall, New Jersey, USA

    Google Scholar 

  34. Uçar A, Demir Y, Güzeliş C (2006) A new formulation for classification by ellipsoids. In: Savacı FA (ed) TAINN 2005. LNAI, vol 3949. Springer, Heidelberg, pp 100–106

  35. Do MN, Vetterli M (2003) The finite ridgelet transform for image representation. IEEE Trans Image Process 12(1):16–28

    Article  MATH  MathSciNet  Google Scholar 

  36. Candes EJ, Demanet L, Donoho DL, Ying L (2006) Fast Discrete curvelet transforms. Multiscale Model Simul 5(3):861–899

    Article  MATH  MathSciNet  Google Scholar 

  37. Viola P, Jones M (2004) Robust real–time face detection. Int J Comput Vision 57(2):137–154

    Article  Google Scholar 

  38. Pizer SM, Amburn EP, Austin JD, Cromartie R, Geselowitz A, Greer T, Romeny BH, Zimmerman JB, Zuiderveld K (1987) Adaptive histogram equalization and its variations. Comp Vis Graph 39(3):355–368

    Article  Google Scholar 

  39. Lyons M, Budynek J, Akamatsu S (1999) Automatic classification of single facial images. IEEE Trans Pattern Anal Mach Intell 21(12):1357–1362

    Article  Google Scholar 

  40. Kanade T, Cohn JF, Yingli T (2000) Comprehensive database for facial expression analysis. In: IEEE 4th international conference on automatic face and gesture recognition. Pittsburgh, PA, USA, pp 46–53

  41. Blake CL, Merz CJ (1998) UCI Repository of machine learning databases. http://archive.ics.uci.edu/ml/datasets.html, Department of Information and Computer Science, University of California, Irvine

  42. Zhang L, Tjondronegoro D (2011) Facial expression recognition using facial movement features. IEEE Trans Affect Compt 2(4):219–229

    Article  Google Scholar 

  43. Kyperountas M, Tefas A, Pitas I (2010) Salient feature and reliable classifier selection for facial expression classification. Pattern Recognit 43(3):972–986

    Article  MATH  Google Scholar 

  44. Zhengdong C, Bin S, Xiang F, Yu-Jin Z (2008) Automatic coefficient selection in weighted maximum margin criterion. In: 19th International conference on pattern recognition. Tampa, FL, pp 1–4

  45. Horikawa Y (2007) Facial expression recognition using KCCA with combining correlation kernels and Kansei information. In: International conference on computational science and its applications. Kuala Lampur, Malaysian, pp 489–498

  46. Bin J, Guo-Sheng Y, Huan-Long Z (2008) Comparative study of dimension reduction and recognition algorithms of DCT and 2DPCA. In: International conference on machine learning and cybernetics. Kunming, China, pp 407–410

  47. Wong J, Cho SA (2010) Face emotion tree structure representation with probabilistic recursive neural network modeling. Neural Comput Appl 19(1):33–54

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayşegül Uçar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uçar, A., Demir, Y. & Güzeliş, C. A new facial expression recognition based on curvelet transform and online sequential extreme learning machine initialized with spherical clustering. Neural Comput & Applic 27, 131–142 (2016). https://doi.org/10.1007/s00521-014-1569-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-014-1569-1

Keywords

Navigation