Skip to main content
Log in

Simulation elektromagnetischer Felder durch Folge eines Blitzeinschlags auf dem Gaisberg und der anschließende Vergleich der Ergebnisse mit Messungen der ALDIS-Blitzortungssensoren

Simulation of electromagnetic fields caused by a lightning strike on the Gaisberg and the comparison of the results with ALDIS sensor measurements

  • Originalarbeit
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Zusammenfassung

Dieser Beitrag präsentiert Ergebnisse aus elektromagnetischen Feldberechnungen unter Verwendung der FDTD-Methode (Finite-Differenzen-Methode im Zeitbereich). Konkret wurde die Ausbreitung eines elektromagnetischen Felds simuliert, welches mit einer bestimmten, messtechnisch erfassten Blitzentladung (sog. „Event“) am Gaisberg-Sendeturm (Salzburg, Österreich) in Verbindung steht. Digitale Geländemodelldaten der realen Ausbreitungspfade vom Gaisberg zu sieben Sensoren des Blitzortungsnetzwerks ALDIS wurden zur Initialisierung der FDTD-Simulationsdomäne verwendet. Um den Blitzkanal zu modellieren, wurde das MTLE-Modell (Modified Transmission Line Model with Exponential Decay) angenommen und der an der Turmspitze, also am Fußpunkt des Blitzkanals, gemessene Blitzstrom als Feldquelle in der Simulation verwendet. Damit wurden die elektromagnetischen Felder entlang der verschiedenen Pfade simuliert und die resultierende Maximalfeldstärke des magnetischen (H‑)Felds an den Sensorstandorten mit der tatsächlich gemessen Feldstärke der ALDIS-Sensoren verglichen. Die Ergebnisse der 3D-FDTD-Feldberechnungen korrelieren gut mit den tatsächlich registrierten Sensor-Messwerten zum gegebenen Event, während die zylindrisch-symmetrische 2D-FDTD-Simulation nicht für alle Ausbreitungspfade in der Lage ist, die gemessenen Feldwerte zu reproduzieren. Der Grund liegt in der komplexen Struktur des alpinen Geländes und den damit verbundenen Reflexionen und Beugungsphänomenen in Tälern und an Bergkämmen. Des Weiteren konnte anhand eines Sets von Sensor-Messwerten von 54 Events verifiziert werden, dass der Einschlag auf der Spitze eines Bergs im Gegensatz zu einem Einschlag auf ebenem Boden zu erhöhten gemessenen Feldwerten führen kann. Dies folgt aus der speziellen Bergtopographie vom Einschlagspunkt in die gegebene Ausbreitungsrichtung. Im Allgemeinen führt stark unebenes Gelände, wie es etwa im alpinen Raum vorliegt, zu einer Dämpfung des Felds entlang des Ausbreitungspfads.

Abstract

In this paper, the results of electromagnetic field computations using the finite-difference time-domain (FDTD) method are presented. Specifically, the propagation of an electromagnetic field caused by a lightning event on the Gaisberg mountain (Salzburg, Austria) was simulated. To initialize the FDTD simulation domain, digital elevation model (DEM) data of the real propagation paths from the Gaisberg to seven different sensors of the lightning detection network ALDIS were used. To model the lightning channel, the MTLE (modified transmission line model with exponential decay) was applied, and the lightning current measured at the top of the tower, that is, at the base of the lightning channel, was used as the current source in the simulation. This way, the electromagnetic fields were simulated for the different propagation paths, and the resulting peak values of the magnetic (H) fields at the ALDIS sensor locations were compared with the values actually measured by the ALDIS sensors. The results of the 3D FDTD computations correlate well with the values actually recorded by the sensors for a given event, while the cylindrical symmetrical 2D FDTD simulation is not capable of reproducing the values measured. This can be explained by the fact that the complex terrain of the Alpine region with its reflections and diffraction phenomena in valleys and on mountain ridges cannot be represented accurately in 2D FDTD simulations. Furthermore, by using a set of sensor values from 54 (normalized) events, we were able to verify that a strike on top of a mountain can lead to higher values compared to a strike on flat terrain. This is due to the specific topography from the strike point in the given direction of propagation. In general, rough terrain like the Austrian Alps has an attenuating effect on the propagating electromagnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Norton KA (1941) The calculation of ground-wave field intensity over a finitely conducting spherical earth. Proc IRE 29(12):623–639. https://doi.org/10.1109/JRPROC.1941.233636

    Article  Google Scholar 

  2. Wait JR (1970) Electromagnetic waves in stratified media. Elsevier

    MATH  Google Scholar 

  3. Wait JR, Murphy A (1957) Influence of a ridge on the low-frequency ground wave. J Res Natl Bur Stand 58:1–5

    Article  Google Scholar 

  4. Wait JR, Murphy A (1958) Further studies of the influence of a ridge on the low-frequency ground wave. J Res Natl Bur Stand 61(1):57–60

    Article  Google Scholar 

  5. Cooray V, Fernando M, Sørensen TS, Götschl T, Pedersen A (2000) Propagation of lightning generated transient electromagnetic fields over finitely conducting ground. J Atmos Sol Terr Phys 62(7):583–600. https://doi.org/10.1016/S1364-6826(00)00008-0

    Article  Google Scholar 

  6. Ming Y, Cooray V (1994) Electromagnetic radiation fields generated by lightning return strokes over a stratified ground

    Google Scholar 

  7. Delfino F, Procopio R, Rossi M (2008) Lightning return stroke current radiation in presence of a conducting ground: 1. Theory and numerical evaluation of the electromagnetic fields. J Geophys Res Atmos 113(D5):D5110. https://doi.org/10.1029/2007JD008553

    Article  Google Scholar 

  8. Delfino F, Procopio R, Rossi M, Rachidi F, Nucci CA (2008) Lightning return stroke current radiation in presence of a conducting ground: 2. Validity assessment of simplified approaches. J Geophys Res Atmos 113(D5):D5111. https://doi.org/10.1029/2007JD008567

    Article  Google Scholar 

  9. Ming Y, Cooray V (1992) Propagation effects caused by a rough ocean surface on the electromagnetic fields generated by lightning return strokes

    Google Scholar 

  10. Bardo EA, Cummins KL, Brooks WA (2004) Lightning current parameters derived from lightning location systems: what can we measure? In: 18th International Lightning Detection Conference (ILDC), Bd. 39, S 1–13

    Google Scholar 

  11. Cummins KL, Cramer JA, Brooks AA (2005) On the effect of land: Sea and other earth surface discontinuities on LLS-inferred lightning parameters, In: VIII International Symposium on Lightning Protection, 21–25 Nov 2005.

    Google Scholar 

  12. Yee K (1966) Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antennas Propag 14(3):302–307

    Article  Google Scholar 

  13. Taflove A, Hagness SC (2005) Computational electrodynamics: the finite-difference time-domain method, 3. Aufl. Artech house, Norwood

    MATH  Google Scholar 

  14. Baba Y, Rakov VA (2016) Electromagnetic computation methods for lightning surge protection studies. IEEE, Wiley

    Book  Google Scholar 

  15. Baba Y, Rakov VA (2020) Lightning-induced effects in electrical and telecommunication systems. Institution of Engineering and Technology

    Book  Google Scholar 

  16. Kohlmann H, Schulz W (2021) Comparison of 3‑D and 2‑D cylindrical symmetry FDTD simulation results of a lightning strike to Gaisberg with ALDIS sensor measurements. IEEE Trans Electromagn Compat. https://doi.org/10.1109/TEMC.2021.3073787

    Article  Google Scholar 

  17. Kohlmann H (2020) FDTD simulation of lightning electromagnetic fields—an approach with the software package MEEP. TU Wien

    Google Scholar 

  18. Hou W, Azadifar M, Rubinstein M, Zhang Q, Rachidi F (2020) An efficient FDTD method to calculate lightning electromagnetic fields over irregular terrain adopting the moving computational domain technique. IEEE Trans Electromagn Compat 62(3):976–980. https://doi.org/10.1109/TEMC.2019.2917282

    Article  Google Scholar 

  19. Soto EA, Perez E, Herrera-Murcia JG (2014) Electromagnetic field due to lightning striking on top of a cone-shaped mountain using the FDTD. Electromagn Compat IEEE Trans 56(5):1112–1120. https://doi.org/10.1109/TEMC.2014.2301138

    Article  Google Scholar 

  20. Li D et al (2016) On lightning electromagnetic field propagation along an irregular terrain. IEEE Trans Electromagn Compat 58(1):161–171. https://doi.org/10.1109/TEMC.2015.2483018

    Article  Google Scholar 

  21. Li D et al (2016) Analysis of lightning electromagnetic field propagation in mountainous terrain and its effects on ToA-based lightning location systems. J Geophys Res Atmos 121(2):895–911. https://doi.org/10.1002/2015JD024234

    Article  Google Scholar 

  22. Li D et al (2019) The propagation effects of lightning electromagnetic fields over mountainous terrain in the earth-ionosphere waveguide. J Geophys Res Atmos 124(24):14198–14219. https://doi.org/10.1029/2018JD030014

    Article  Google Scholar 

  23. Li D, Rubinstein M, Rachidi F, Diendorfer G, Schulz W, Lu G (2017) Location accuracy evaluation of ToA-based lightning location systems over mountainous terrain. J Geophys Res Atmos 122(21):11,711–760,775. https://doi.org/10.1002/2017JD027520

    Article  Google Scholar 

  24. Hou W, Azadifar M, Rubinstein M, Rachidi F, Zhang Q (2020) On the propagation of lightning-radiated electromagnetic fields across a mountain. IEEE Trans Electromagn Compat. https://doi.org/10.1109/TEMC.2019.2947095

    Article  Google Scholar 

  25. Oskooi A, Roundy D, Ibanescu M, Bermel P, Joannopoulos JD, Johnson SG (2010) Meep: a flexible free-software package for electromagnetic simulations by the FDTD method. Comput Phys Commun 181(3):687–702. https://doi.org/10.1016/j.cpc.2009.11.008

    Article  MATH  Google Scholar 

  26. (2021) MEEP documentation. https://meep.readthedocs.io. Zugegriffen: 5. Juli 2021

  27. (2021) MEEP Github repository. https://github.com/NanoComp/meep. Zugegriffen: 5. Juli 2021

  28. Nucci CA, Mazzetti G, Rachidi F, Ianoz MV (1988) On lightning return stroke models for „LEMP“ calculations

    Google Scholar 

  29. Rachidi F et al (2001) Current and electromagnetic field associated with lightning-return strokes to tall towers. Electromagn Compat IEEE Trans 43(3):356–367. https://doi.org/10.1109/15.942607

    Article  Google Scholar 

  30. Courant R, Friedrichs K, Lewy H (1928) Über die partiellen Differenzengleichungen der mathematischen Physik. Math Ann 100(1):32–74. https://doi.org/10.1007/BF01448839

    Article  MathSciNet  MATH  Google Scholar 

  31. ITU Radiocommunication Assembly (1999) World atlas of ground conductivities. ITU Radiocommunication Assembly

    Google Scholar 

  32. Kohlmann H, Schulz W, Rachidi F (2021) Evaluation of site errors in LLS magnetic direction finding caused by large hills using the 3D-FDTD technique. Earth Space Sci. https://doi.org/10.1029/2021ea001914

    Article  Google Scholar 

  33. Schulz W, Diendorfer G, Pedeboy S, Poelman D (2016) The European lightning location system EUCLID—Part 1: Performance analysis and validation. Nat Hazards Earth Syst Sci 16(2):595–605. https://doi.org/10.5194/nhess-16-595-2016

    Article  Google Scholar 

  34. Heidler F, Paul C (2021) Field enhancement by lightning strikes to tall tower versus lightning strikes to flat ground. IEEE Trans Electromagn Compat 63(2):550–557. https://doi.org/10.1109/TEMC.2020.3021202

    Article  Google Scholar 

  35. Schulz W, Diendorfer G (2004) Lightning peak currents measured on tall towers and measured with lightning location systems. In: 18th International Lightning Detection Conference (ILDC), Bd. 51, S 1–5

    Google Scholar 

  36. Schulz W, Diendorfer G (2002) Amplitude site error of magnetic direction finder. In: 26th International Conference on Lightning Protection (ICLP) 09.2002, S 4–7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannes Kohlmann OVE.

Additional information

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohlmann, H., Schulz, W. & Pichler, H. Simulation elektromagnetischer Felder durch Folge eines Blitzeinschlags auf dem Gaisberg und der anschließende Vergleich der Ergebnisse mit Messungen der ALDIS-Blitzortungssensoren. Elektrotech. Inftech. 139, 335–343 (2022). https://doi.org/10.1007/s00502-022-01028-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-022-01028-x

Schlüsselwörter

Keywords

Navigation