Skip to main content
Log in

Second-order multi-object filtering with target interaction using determinantal point processes

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

The probability hypothesis density (PHD) filter, which is used for multi-target tracking based on sensor measurements, relies on the propagation of the first-order moment, or intensity function, of a point process. This algorithm assumes that targets behave independently, an hypothesis which may not hold in practice due to potential target interactions. In this paper, we construct a second-order PHD filter based on determinantal point processes which are able to model repulsion between targets. Such processes are characterized by their first- and second-order moments, which allows the algorithm to propagate variance and covariance information in addition to first-order target count estimates. Our approach relies on posterior moment formulas for the estimation of a general hidden point process after a thinning operation and a superposition with a Poisson point process, and on suitable approximation formulas in the determinantal point process setting. The repulsive properties of determinantal point processes apply to the modeling of negative correlation between distinct measurement domains. Monte Carlo simulations with correlation estimates are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brezis H (1983) Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree]. Masson, Paris

  2. Clark D, de Melo F (2018) A linear-complexity second-order multi-object filter via factorial cumulants. In: 2018 21st international conference on information fusion (FUSION), pp 1250–1259

  3. Clark D, Delande E, Houssineau J (2016) Basic concepts for multi-object estimation. Heriot-Watt University, Lecture notes

  4. Clark D, Houssineau J (2012) Faa di Bruno’s formula for Gateaux differentials and interacting stochastic population processes. Preprint arXiv:1202.0264v4

  5. Daley DJ, Vere-Jones D (2003) An introduction to the theory of point processes. Probability and its Applications, vol I. Springer, New York

    MATH  Google Scholar 

  6. de Melo F, Maskell S (2019) A CPHD approximation based on a discrete-gamma cardinality model. IEEE Trans Signal Process 67(2):336–350

    Article  MathSciNet  Google Scholar 

  7. Decreusefond L, Flint I, Privault N, Torrisi G (2016) Determinantal point processes. In: Peccati G, Reitzner M (eds) Stochastic analysis for Poisson point processes: Malliavin Calculus, Wiener–Itô chaos expansions and stochastic geometry, volume 7 of Bocconi & Springer series. Springer, Berlin, pp 311–342

    Chapter  Google Scholar 

  8. Delande E, Üney M, Houssineau J, Clark D (2014) Regional variance for multi-object filtering. IEEE Trans Signal Process 62(13):3415–3428

    Article  MathSciNet  Google Scholar 

  9. Fränken D, Schmidt M, Ulmke M (2009) Spooky action at a distance in the cardinalized probability hypothesis density filter. IEEE Trans Aerosp Electron Syst 45(4):1657–1664

    Article  Google Scholar 

  10. Georgii H, Yoo H (2005) Conditional intensity and Gibbsianness of determinantal point processes. J Stat Phys 118(1–2):55–84

    Article  MathSciNet  Google Scholar 

  11. Hoffman J, Mahler R (2004) Multitarget Bayes filtering via first-order multitarget moments. IEEE Trans Syst Man Cybern Part A Syst Hum 34(3):327–336

    Article  Google Scholar 

  12. Hough J-B, Krishnapur M, Peres Y, Virág B (2009) Zeros of Gaussian analytic functions and determinantal point processes, volume 51 of University lecture series. American Mathematical Society, Providence

    MATH  Google Scholar 

  13. Jorquera F, Hernández S, Vergara D (2018) Multi target tracking using determinantal point processes. Progress in pattern recognition, image analysis, computer vision, and applications, volume 10657 of lecture notes in computer science. Springer, Berlin, pp 323–330

    Chapter  Google Scholar 

  14. Jorquera F, Hernández S, Vergara D (2019) Probability hypothesis density filter using determinantal point processes for multi object tracking. Comput Vis Image Underst 183:33–41

    Article  Google Scholar 

  15. Koch W (2018) On anti-symmetry in multiple target tracking. In: 2018 21st international conference on information fusion (FUSION), pp 957–964

  16. Li T, Corchado J, Sun S, Fan H (2017) Multi-EAP: extended EAP for multi-estimate extraction for SMC-PHD filter. Chin J Aeronaut 30(1):368–379

    Article  Google Scholar 

  17. Li T, Sattar TP, Han Q, Sun S (2013) Roughening methods to prevent sample impoverishment in the particle PHD filter. In: Proceedings of the 16th international conference on information fusion. IEEE, Istanbul, pp 17–22

  18. Lund J, Rudemo M (2000) Models for point processes observed with noise. Biometrika 87(2):235–249

    Article  MathSciNet  Google Scholar 

  19. Macchi O (1975) The coincidence approach to stochastic point processes. Adv Appl Probab 7:83–122

    Article  MathSciNet  Google Scholar 

  20. Mahler R (2003) Multitarget Bayes filtering via first-order multitarget moments. IEEE Trans Aerosp Electron Syst 39(4):1152–1178

    Article  Google Scholar 

  21. Mahler R (2007) PHD filters of higher order in target number. IEEE Trans Aerosp Electron Syst 43(4):1523–1543

    Article  Google Scholar 

  22. Mahler R (2015) Tracking “bunching” multitarget correlations. In: IEEE international conference on multisensor fusion and integration for intelligent systems (MFI), pp 102–109

  23. Mori S (1997) Random sets in data fusion. Multi-object state-estimation as a foundation of data fusion theory. In: Random sets (Minneapolis, MN, 1996), volume 97 of IMA volume in mathematics and its applications, pp 185–207. Springer, New York

  24. Moyal J (1964) Multiplicative population processes. J Appl Probab 1:267–283

    Article  Google Scholar 

  25. Moyal JE (1962) The general theory of stochastic population processes. Acta Math 108:1–31

    Article  MathSciNet  Google Scholar 

  26. Osada H (2013) Interacting Brownian motions in infinite dimensions with logarithmic interaction potentials. Ann Probab 41(1):1–49

    Article  MathSciNet  Google Scholar 

  27. Portenko N, Salehi H, Skorokhod A (1997) On optimal filtering of multitarget tracking systems based on point processes observations. Random Oper Stoch Equ 5(1):1–34

    Article  MathSciNet  Google Scholar 

  28. Schlangen I, Delande E, Houssineau J, Clark D (2018) A second-order PHD filter with mean and variance in target number. IEEE Trans Signal Process 66(1):48–63

    Article  MathSciNet  Google Scholar 

  29. Schumacher D, Vo B-T, Vo B-N (2008) A consistent metric for performance evaluation of multi-object filters. IEEE Trans Signal Process 56(8):3447–3457

    Article  MathSciNet  Google Scholar 

  30. Shirai T, Takahashi Y (2003) Random point fields associated with certain Fredholm determinants. I. Fermion, Poisson and boson point processes. J Funct Anal 205(2):414–463

    Article  MathSciNet  Google Scholar 

  31. Singh S, Vo B-N, Baddeley A, Zuyez S (2009) Filters for spatial point processes. SIAM J Control Optim 48(4):2275–2295

    Article  MathSciNet  Google Scholar 

  32. Soshnikov A (2000) Determinantal random point fields. Usp Mat Nauk 55(5(335)):107–160

    Article  MathSciNet  Google Scholar 

  33. van Lieshout MNM (1995) Stochastic geometry models in image analysis and spatial statistics, volume 108 of CWI Tract. Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam

  34. Vo B-N, Ma W-K (2006) The Gaussian mixture probability hypothesis density filter. IEEE Trans Aerosp Electron Syst 54(11):4091–4104

    MATH  Google Scholar 

  35. Vo B-N, Singh SS, Doucet A (2005) Sequential Monte Carlo methods for multitarget filtering with random finite sets. IEEE Trans Aerosp Electron Syst 41(4):1224–1245

    Article  Google Scholar 

  36. Vo B-T, Vo B-N, Cantoni A (2007) Analytic implementations of the cardinalized probability hypothesis density filter. IEEE Trans Signal Process 55(7):3553–3567

    Article  MathSciNet  Google Scholar 

  37. Vo B-T, Vo B-N, Cantoni A (2009) The cardinality balanced multi-target multi-Bernoulli filter and its implementations. IEEE Trans Signal Process 57(2):409–423

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by the Industrial Postgraduate Programme of the Economic Development Board of Singapore and Delphi Automotive Systems Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Privault.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Janossy density approximation

Appendix: Janossy density approximation

Since the corrector terms \(l^{(1)}_{z_{1:m}} ( x )\), \(l^{(1)}_{z_{1:m}} (x;z)\), \(l^{(2)}_{z_{1:m}} (x,y)\), \(l^{(2)}_{z_{1:m}} (x,y;z)\), \(l^{(2)}_{z_{1:m}} (x,y;z,z')\) in (3.15), (3.19) and the kernel update formula (5.8) have no closed form expression in the determinantal setting, we propose to use the Janossy density approximations

$$\begin{aligned} j^{(n)}_\Phi (x_1,\ldots , x_{r-1},x,x_{r+1},\ldots , x_n) \simeq J_\Phi (x,x) j^{(n-1)}_\Phi (x_1,\ldots , x_{r-1},x_{r+1},\ldots , x_n)\nonumber \\ \end{aligned}$$
(A.1)

\(n\ge 1\), which corresponds to a (Poisson) first-order approximation, and

$$\begin{aligned}&j^{(n)}_\Phi (x_1,\ldots , x_{r-1},x,x_{r+1},\ldots , x_{p-1},y,x_{p+1},\ldots , x_n) \nonumber \\&\quad \simeq (J_\Phi (x,x)J_\Phi (y,y)- ( J_\Phi (x,y))^2 ) j^{(n-2)}_\Phi (x_1,\ldots , {\hat{x}}_r , \ldots , {\hat{x}}_p ,\ldots , x_n),\nonumber \\ \end{aligned}$$
(A.2)

\(n\ge 2\), which corresponds to a second-order (determinant) approximation, obtained from (4.8) by assuming that the off-diagonal entries \(J_\Phi (x_i,x_j)\), \(i\not = j\), are small.

This Janossy approximation is specially relevant to \(\alpha \)-determinantal Ginibre point processes (GPP) which approximate a Poisson point process when \(\alpha \in [-1,0)\) tends to 0, see Shirai and Takahashi [30].

Proposition A.1

Under (A.1) we have the first-order Poisson approximations \(l^{(1)}_{z_{1:m}} (x) \simeq J_\Phi (x,x)\), \(m\ge 0\), and

$$\begin{aligned} l^{(1)}_{z_{1:m}} (x;z) \simeq \frac{ J_\Phi (x,x) }{ l_c(z) + \int _\Lambda J_\Phi (u,u) {\tilde{l}}_d (z | u) \nu ( \hbox {d}u) }, \end{aligned}$$

\(z\in z_{1:m}\), \(x\in \Lambda \), \(m\ge 1\).

Proof

By (3.16) and (A.1) we have

$$\begin{aligned} \Upsilon ^{(1)}_{z_{1:m}} (x)= & {} \displaystyle \sum _{S\subset \{1,\ldots , m\}} \sum _{p\ge |S|} \frac{q_d^{p-|S|}}{(p-|S|)!} \prod _{j \notin S} l_c(z_j) \int _{\Lambda ^p} j^{(p+1)}_\Phi (x_{1:p} , x ) \prod _{i \in S} {\tilde{l}}_d (z_i | x_i) \nu ( \hbox {d}x_{1:p}) \nonumber \\\simeq & {} J_\Phi (x,x) \sum _{p\ge 0} \displaystyle \sum _{\begin{array}{c} S\subset \{1,\ldots , m\} \\ |S| \le p \end{array}} \frac{q_d^{p-|S|}}{(p-|S|)!} \prod _{j \notin S} l_c(z_j) \int _{\Lambda ^p} j^{(p)}_\Phi (x_{1:p} ) \prod _{i \in S} {\tilde{l}}_d (z_i | x_i) \nu ( \hbox {d}x_{1:p}) \nonumber \\= & {} J_\Phi (x,x) j^{(m)}_\Xi (z_1,\ldots , z_m) , \end{aligned}$$
(A.3)

by (3.9), which yields the approximation \(l^{(1)}_{z_{1:m}} ( x ) \simeq J_\Phi (x,x)\). On the other hand, for \(r=1,\ldots ,m\), using again (A.1) and (3.9) we have

$$\begin{aligned}&j^{(m)}_\Xi (z_1,\ldots , z_m) \nonumber \\&\quad = \displaystyle \frac{\partial _{\delta _{z_1}} }{\partial g} \cdots \frac{\partial _{\delta _{z_m}} }{\partial g} {{{\mathcal {G}}}}_{\Phi , \Xi } ( \mathbf{1},g)_{\mid g=0} \nonumber \\&\quad = \displaystyle \sum _{p\ge 0} \sum _{\begin{array}{c} S\subset \{1,\ldots , m\} \\ |S|\le p \end{array}} \frac{ q_d^{p-|S|}}{(p-|S|)!} \prod _{j \notin S} l_c(z_j) \int _{\Lambda ^p} j^{(p)}_\Phi (y_{1:p}) \prod _{i \in S} {\tilde{l}}_d (z_i | y_i) \nu (dy_{1:p} ) \nonumber \\&\quad \simeq l_c(z_r) \sum _{p\ge 0} \displaystyle \sum _{\begin{array}{c} S\subset \{1,\ldots , m\} \setminus \{ r \} \\ |S| \le p \end{array}} \frac{q_d^{p-|S|}}{(p-|S|)!} \nonumber \\&\qquad \prod _{j \notin S} l_c(z_j) \int _{\Lambda ^p} j^{(p)}_\Phi (x_{1:p} ) \prod _{i \in S } {\tilde{l}}_d (z_i | x_i) \nu ( \hbox {d}x_{1:p}) \nonumber \\&\qquad + \int _\Lambda J_\Phi (x_r,x_r) {\tilde{l}}_d (z_r | x_r) \nu ( \hbox {d}x_r) \sum _{p\ge 0} \displaystyle \sum _{\begin{array}{c} S\subset \{1,\ldots , m\} \\ |S| \le p+1 , r\in S \end{array}} \frac{q_d^{p+1-|S|}}{(p+1-|S|)!} \prod _{j \notin S} l_c(z_j)\nonumber \\&\qquad \int _{\Lambda ^p} j^{(p)}_\Phi (x_{1:p} ) \prod _{i \in S \setminus \{ r \} } {\tilde{l}}_d (z_i | x_i) \nu ( \hbox {d}x_{1:p}) \nonumber \\&\quad = l_c(z_r) \sum _{p\ge 0} \displaystyle \sum _{\begin{array}{c} S\subset \{1,\ldots , m\} \setminus \{ r \} \\ |S| \le p \end{array}} \frac{q_d^{p-|S|}}{(p-|S|)!} \prod _{j \notin S} l_c(z_j)\nonumber \\&\qquad \int _{\Lambda ^p} j^{(p)}_\Phi (x_{1:p}) \prod _{i \in S } {\tilde{l}}_d (z_i | x_i) \nu ( \hbox {d}x_{1:p}) \nonumber \\&\qquad + \int _\Lambda J_\Phi (u,u) {\tilde{l}}_d (z_r | u) \nu ( \hbox {d}u) \sum _{p\ge 0} \displaystyle \sum _{\begin{array}{c} S\subset \{1,\ldots , m\} \setminus \{ r \} \\ |S| \le p \end{array}} \frac{q_d^{p-|S|}}{(p-|S|)!} \prod _{j \notin S} l_c(z_j)\nonumber \\&\qquad \int _{\Lambda ^p} j^{(p)}_\Phi (x_{1:p} ) \prod _{i \in S \setminus \{ r \} } {\tilde{l}}_d (z_i | x_i) \nu ( \hbox {d}x_{1:p}) \nonumber \\&\quad = \left( l_c(z_r) + \int _\Lambda J_\Phi (u,u) {\tilde{l}}_d (z_r | u) \nu ( \hbox {d}u) \right) \sum _{p\ge 0} \displaystyle \sum _{\begin{array}{c} S\subset \{1,\ldots , m\} \setminus \{ r \} \\ |S| \le p \end{array}} \frac{q_d^{p-|S|}}{(p-|S|)!} \nonumber \\&\qquad \prod _{j \notin S} l_c(z_j) \int _{\Lambda ^p} j^{(p)}_\Phi (x_{1:p} ) \prod _{i \in S } {\tilde{l}}_d (z_i | x_i) \nu ( \hbox {d}x_{1:p}) \nonumber \\&= \left( l_c(z_r) + \int _\Lambda J_\Phi (u,u) {\tilde{l}}_d (z_r | u) \nu ( \hbox {d}u) \right) j^{(m-1)}_\Xi (z_1,\ldots , z_{r-1},z_{r+1}, \ldots , z_m). \end{aligned}$$
(A.4)

We conclude by taking \(z_r=z\) and noting that by (3.15) and (A.3)–(A.4) we have

$$\begin{aligned} l^{(1)}_{z_{1:m}} (x;z) = \frac{ \Upsilon ^{(1)}_{z_{1:m}\! \setminus z} (x) }{j^{(m)}_\Xi (z_{1:m})} \simeq J_\Phi (x,x) \frac{ j^{(m-1)}_\Xi ( z_{1:m} \! \setminus z ) }{j^{(m)}_\Xi (z_{1:m})}. \end{aligned}$$

Proposition A.2

Under (A.1)–(A.2), we have the second-order approximations

$$\begin{aligned}&l^{(2)}_{z_{1:m}} (x,y) \simeq J_\Phi (x,x)J_\Phi (y,y)-J_\Phi (x,y)^2,\\&\quad l^{(2)}_{z_{1:m}} (x,y;z) \simeq \frac{ J_\Phi (x,x)J_\Phi (y,y)-J_\Phi (x,y)^2 }{ l_c(z) + \int _\Lambda J_\Phi (u,u) {\tilde{l}}_d (z | u) \nu ( \hbox {d}u) } , \end{aligned}$$

\(z \in z_{1:m}\), \(x,y\in \Lambda \), \(m\ge 1\), and

$$\begin{aligned} l^{(2)}_{z_{1:m}} (x,y;z,z') \simeq \frac{ J_\Phi (x,x)J_\Phi (y,y)-J_\Phi (x,y)^2 }{ s_c(z) s_c(z') - \int _{\Lambda ^2} J_\Phi (u,v)^2 {\tilde{l}}_d (z | u) {\tilde{l}}_d (z' | v) \nu ( \hbox {d}u) \nu ( \hbox {d}v) } , \end{aligned}$$

\(z, z' \in z_{1:m}\), \(z\not = z'\), \(x,y\in \Lambda \), \(m\ge 2\), where

$$\begin{aligned} s_c(z) : = l_c(z) + \int _\Lambda J_\Phi (v,v) {\tilde{l}}_d (z | v)\nu (\hbox {d}v), \quad z\in \Lambda . \end{aligned}$$
(A.5)

Proof

By (3.21) and (A.2) we have

$$\begin{aligned}&\Upsilon ^{(2)}_{z_{1:m}} (x,y)\nonumber \\&\quad = \sum _{p\ge 0} \displaystyle \sum _{\begin{array}{c} S\subset \{1,\ldots , m\} \\ |S| \le p \end{array}} \frac{q_d^{p-|S|}}{(p-|S|)!} \prod _{j \notin S} l_c(z_j) \int _{\Lambda ^p} j^{(p+2)}_\Phi (x_{1:p}, x, y ) \prod _{i \in S} {\tilde{l}}_d (z_i | x_i) \nu (\hbox {d}x_{1:p} ) \nonumber \\&\quad = (J_\Phi (x,x)J_\Phi (y,y)-J_\Phi (x,y)^2 ) \sum _{p\ge 0} \displaystyle \sum _{\begin{array}{c} S\subset \{1,\ldots , m\} \\ |S| \le p \end{array}} \frac{q_d^{p-|S|}}{(p-|S|)!} \nonumber \\&\qquad \prod _{j \notin S} l_c(z_j) \int _{\Lambda ^p} j^{(p)}_\Phi (x_{1:p} ) \prod _{i \in S} {\tilde{l}}_d (z_i | x_i) \nu (\hbox {d}x_{1:p} )\nonumber \\&\quad = ( J_\Phi (x,x)J_\Phi (y,y)-J_\Phi (x,y)^2 ) j^{(m)}_\Xi ( z_{1:m}), \end{aligned}$$
(A.6)

and for \(r,u=1,\ldots ,m\), using (A.1)–(A.2) and (3.9) we find

$$\begin{aligned}&j^{(m)}_\Xi (z_{1:m}) \\&\quad = \displaystyle \sum _{n\ge 0} \sum _{\begin{array}{c} S\subset \{1,\ldots , m\} \\ |S|\le n \end{array}} \prod _{j \notin S} l_c(z_j) \frac{ q_d^{n-|S|}}{(n-|S|)!} \int _{\Lambda ^n} j^{(n)}_\Phi (y_{1:n}) \prod _{i \in S} {\tilde{l}}_d (z_i | y_i) \nu (dy_{1:n} )\\&\quad \simeq l_c(z_r) l_c(z_u) \sum _{p\ge 0} \displaystyle \sum _{\begin{array}{c} S\subset \{1,\ldots , m\} \setminus \{ r , u \} \\ |S| \le p \end{array}} \frac{q_d^{p-|S|}}{(p-|S|)!} \prod _{j \notin S} l_c(z_j) \int _{\Lambda ^p} j^{(p)}_\Phi (x_{1:p} ) \prod _{i \in S } {\tilde{l}}_d (z_i | x_i) \nu ( \hbox {d}x_{1:p})\\&\qquad + l_c(z_r) \int _\Lambda J_\Phi (v,v) {\tilde{l}}_d (z_u | v)\nu (\hbox {d}v) \\&\qquad \times \sum _{p\ge 0} \int _{\Lambda ^p} \displaystyle \sum _{\begin{array}{c} S\subset \{1,\ldots , m\} \setminus \{ r \} \\ |S| \le p+1, u \in S \end{array}} \frac{q_d^{p+1-|S|}}{(p+1-|S|)!} j^{(p)}_\Phi (x_{1:p} ) \prod _{j \notin S } l_c(z_j) \prod _{i \in S \setminus \{ u\} } {\tilde{l}}_d (z_i | x_i) \nu ( \hbox {d}x_{1:p}) \\&\qquad + l_c(z_u) \int _\Lambda J_\Phi (v,v) {\tilde{l}}_d (z_r | v)\nu (\hbox {d}v) \\&\qquad \times \sum _{p\ge 0} \int _{\Lambda ^p} \displaystyle \sum _{\begin{array}{c} S\subset \{1,\ldots , m\} \setminus \{ u \} \\ |S| \le p+1, r \in S \end{array}} \frac{q_d^{p+1-|S|}}{(p+1-|S|)!} j^{(p)}_\Phi (x_{1:p}) \prod _{j \notin S } l_c(z_j) \prod _{i \in S \setminus \{ r \} } {\tilde{l}}_d (z_i | x_i) \nu ( \hbox {d}x_{1:p}) \\&\qquad + \int _\Lambda ( J_\Phi (x_r,x_r)J_\Phi (x_u,x_u)-J_\Phi (x_r,x_u)^2 ) {\tilde{l}}_d (z_r | x_r) {\tilde{l}}_d (z_u | x_u) \nu ( \hbox {d}x_r) \nu ( \hbox {d}x_u) \\&\qquad \times \sum _{p\ge 0} \int _{\Lambda ^p} \displaystyle \sum _{\begin{array}{c} S\subset \{1,\ldots , m\} \\ |S| \le p+2 , r\in S \end{array}} \frac{q_d^{p+2-|S|}}{(p+2-|S|)!} j^{(p)}_\Phi (x_{1:p} ) \prod _{j \notin S} l_c(z_j) \prod _{i \in S \setminus \{ r , u \} } {\tilde{l}}_d (z_i | x_i) \nu ( \hbox {d}x_{1:p}) \\&\quad = l_c(z_r) l_c(z_u) \sum _{p\ge 0} \int _{\Lambda ^p} \displaystyle \sum _{\begin{array}{c} S\subset \{1,\ldots , m\} \setminus \{ r , u\} \\ |S| \le p \end{array}} \frac{q_d^{p-|S|}}{(p-|S|)!} j^{(p)}_\Phi (x_{1:p} ) \prod _{j \notin S} l_c(z_j) \prod _{i \in S } {\tilde{l}}_d (z_i | x_i) \nu ( \hbox {d}x_{1:p}) \\&\qquad + l_c(z_r) \int _\Lambda J_\Phi (v,v) {\tilde{l}}_d (z_u | v)\nu (\hbox {d}v) \sum _{p\ge 0} \int _{\Lambda ^p} \displaystyle \sum _{\begin{array}{c} S\subset \{1,\ldots , m\} \setminus \{ r , u \} \\ |S| \le p, u \in S \end{array}} \frac{q_d^{p-|S|}}{(p-|S|)!} j^{(p)}_\Phi (x_{1:p} )\\&\qquad \prod _{j \notin S } l_c(z_j) \prod _{i \in S } {\tilde{l}}_d (z_i | x_i) \nu ( \hbox {d}x_{1:p}) \\&\qquad + l_c(z_u) \int _\Lambda J_\Phi (v,v) {\tilde{l}}_d (z_r | v)\nu (\hbox {d}v) \sum _{p\ge 0} \int _{\Lambda ^p} \displaystyle \sum _{\begin{array}{c} S\subset \{1,\ldots , m\} \setminus \{ r, u \} \\ |S| \le p, r \in S \end{array}} \frac{q_d^{p-|S|}}{(p-|S|)!} j^{(p)}_\Phi (x_{1:p} )\\&\qquad \prod _{j \notin S } l_c(z_j) \prod _{i \in S } {\tilde{l}}_d (z_i | x_i) \nu ( \hbox {d}x_{1:p}) \\ \end{aligned}$$
$$\begin{aligned}&\qquad + \int _{\Lambda ^2} ( J_\Phi (u,u)J_\Phi (v,v)-J_\Phi (u,v)^2 ) {\tilde{l}}_d (z_r | u) {\tilde{l}}_d (z_u | v) \nu ( \hbox {d}u) \nu ( \hbox {d}v) \nonumber \\&\qquad \times \sum _{p\ge 0} \int _{\Lambda ^p} \sum _{\begin{array}{c} S\subset \{1,\ldots , m\} \setminus \{ r , u \} \\ |S| \le p \end{array}} \frac{q_d^{p-|S|}}{(p-|S|)!} j^{(p)}_\Phi (x_{1:p} ) \prod _{j \notin S} l_c(z_j) \prod _{i \in S } {\tilde{l}}_d (z_i | x_i) \nu ( \hbox {d}x_{1:p}) \nonumber \\&\quad = \left( l_c(z_r) l_c(z_u) + l_c(z_r) \int _\Lambda J_\Phi (v,v) {\tilde{l}}_d (z_u | v)\nu (\hbox {d}v) + l_c(z_u) \int _\Lambda J_\Phi (v,v) {\tilde{l}}_d (z_r | v)\nu (\hbox {d}v) \right. \nonumber \\&\left. \qquad + \int _{\Lambda ^2} (J_\Phi (u,u)J_\Phi (v,v)-J_\Phi (u,v)^2 ) {\tilde{l}}_d (z_r | u) {\tilde{l}}_d (z_u | v) \nu ( \hbox {d}u) \nu ( \hbox {d}v) \right) \nonumber \\&\qquad \times \sum _{p\ge 0} \int _{\Lambda ^p} \displaystyle \sum _{\begin{array}{c} S\subset \{1,\ldots , m\} \setminus \{ r , u \} \\ |S| \le p \end{array}} \frac{q_d^{p-|S|}}{(p-|S|)!} j^{(p)}_\Phi (x_{1:p} ) \prod _{j \notin S} l_c(z_j) \prod _{i \in S } {\tilde{l}}_d (z_i | x_i) \nu ( \hbox {d}x_{1:p}) \nonumber \\&\quad = \left( l_c(z_r) l_c(z_u) + l_c(z_r) \int _\Lambda J_\Phi (v,v) {\tilde{l}}_d (z_u | v)\nu (\hbox {d}v) \right. \nonumber \\&\left. \qquad + l_c(z_u) \int _\Lambda J_\Phi (v,v) {\tilde{l}}_d (z_r | v)\nu (\hbox {d}v) \right. \nonumber \\&\qquad \left. + \int _{\Lambda ^2} ( J_\Phi (u,u)J_\Phi (v,v)-J_\Phi (u,v)^2 ) {\tilde{l}}_d (z_r | u) {\tilde{l}}_d (z_u | v) \nu ( \hbox {d}u) \nu ( \hbox {d}v) \right) \nonumber \\&\qquad \times j^{(m-2)}_\Xi (z_1,\ldots , z_{r-1},z_{r+1}, \ldots , z_{u-1},z_{u+1}, \ldots , z_m) \nonumber \\&\quad = \left( s_c(z_r) s_c(z_u) - \int _{\Lambda ^2} J_\Phi (u,v)^2 {\tilde{l}}_d (z_r | u) {\tilde{l}}_d (z_u | v) \nu ( \hbox {d}u) \nu ( \hbox {d}v) \right) \nonumber \\&\qquad \times j^{(m-2)}_\Xi (z_1,\ldots , z_{r-1},z_{r+1}, \ldots , z_{u-1},z_{u+1}, \ldots , z_m) . \end{aligned}$$
(A.7)

We conclude by taking \((z_r,z_u)=(z,z')\) and noting that by (3.20) and (A.6)–(A.7) we have

$$\begin{aligned} l^{(2)}_{z_{1:m}} (x,y,z,z')= & {} \frac{\Upsilon ^{(2)}_{z_{1:m}\! \setminus \{ z,z'\}} (x,y)}{j^{(m)}_\Xi (z_{1:m})} \\\simeq & {} ( J_\Phi (x,x)J_\Phi (y,y)-J_\Phi (x,y)^2 ) \frac{ j^{(m-2)}_\Xi ( z_{1:m}\! \setminus \{ z,z' \} ) }{j^{(m)}_\Xi (z_{1:m})} \\\simeq & {} \frac{ ( J_\Phi (x,x)J_\Phi (y,y)-J_\Phi (x,y)^2 ) }{ s_c(z) s_c(z') - \int _{\Lambda ^2} J_\Phi (u,v)^2 {\tilde{l}}_d (z | u) {\tilde{l}}_d (z' | v) \nu ( \hbox {d}u) \nu ( \hbox {d}v) } , \end{aligned}$$

\(z, z' \in z_{1:m}\), \(z\not = z'\), \(m\ge 2\). Similarly, by (3.19) and (A.4), (A.6) we also have

$$\begin{aligned} l^{(2)}_{z_{1:m}} (x,y;z)= & {} \frac{\Upsilon ^{(2)}_{z_{1:m}\! \setminus z } (x,y)}{j^{(m)}_\Xi (z_{1:m})} \\\simeq & {} ( J_\Phi (x,x)J_\Phi (y,y)-J_\Phi (x,y)^2 ) \frac{ j^{(m-1)}_\Xi ( z_{1:m}\! \setminus z ) }{j^{(m)}_\Xi (z_{1:m})} \\\simeq & {} \frac{ J_\Phi (x,x)J_\Phi (y,y)-J_\Phi (x,y)^2 }{l_c(z) + \int _\Lambda J_\Phi (u,u) {\tilde{l}}_d (z | u) \nu ( \hbox {d}u) }, \qquad z \in z_{1:m}, \quad m\ge 1. \end{aligned}$$

As a consequence of (3.18) and Proposition A.2, the second-order conditional factorial moment density of \(\Phi \) given that \(\Xi =z_{1:m}=(z_1,\ldots , z_m)\) will be approximated as

$$\begin{aligned}&\rho ^{(2)}_{\Phi \mid \Xi =z_{1:m}} (x,y) \simeq q_d^2 ( J_\Phi (x,x)J_\Phi (y,y)-J_\Phi (x,y)^2 ) \nonumber \\&\qquad + q_d \sum _{z\in z_{1:m}} \frac{ ( J_\Phi (x,x)J_\Phi (y,y)-J_\Phi (x,y)^2 ) \big ( {\tilde{l}}_d (z | x) + {\tilde{l}}_d (z | y) \big )}{ s_c(z) } \nonumber \\&\qquad + \sum _{\begin{array}{c} z,z'\in z_{1:m} \\ z \not = z' \end{array}} \frac{ ( J_\Phi (x,x)J_\Phi (y,y)-J_\Phi (x,y)^2 ) {\tilde{l}}_d (z | x) {\tilde{l}}_d (z' | y) }{ s_c(z) s_c(z') - \int _{\Lambda ^2} J_\Phi (u,v)^2 {\tilde{l}}_d (z | u) {\tilde{l}}_d (z' | v) \nu (\hbox {d}u) \nu (\hbox {d}v) }, \end{aligned}$$
(A.8)

\(m\ge 0\), with \(\rho ^{(2)}_{\Phi \mid \Xi =z_{1:m}} (x,x):=0\), \(x\in \Lambda \).

Proposition A.3

The (approximate) kernel update formula is given by

$$\begin{aligned} K_{\Phi \mid \Xi =z_{1:m}} (x,y)^2\simeq & {} q^2_d J_\Phi (x,y)^2 + q_d J_\Phi (x,y)^2 \sum _{z\in z_{1:m}} \frac{ \big ( {\tilde{l}}_d (z | x) + {\tilde{l}}_d (z | y) \big ) }{ s_c ( z ) } \displaystyle \\&\displaystyle + J_\Phi ( x , x ) J_\Phi ( y , y ) \sum _{z,z'\in z_{1:m}} \frac{ {\tilde{l}}_d (z | x) {\tilde{l}}_d (z' | y)}{ s_c(z) s_c(z') } \\&+ \sum _{\begin{array}{c} z,z'\in z_{1:m} \\ z \not = z' \end{array}} \frac{ (J_\Phi (x,y)^2 - J_\Phi (x,x)J_\Phi (y,y) ) {\tilde{l}}_d (z | x) {\tilde{l}}_d (z' | y) }{ s_c(z) s_c(z') - \int _{\Lambda ^2} J_\Phi (u,v)^2 {\tilde{l}}_d (z | u) {\tilde{l}}_d (z' | v) \nu (\hbox {d}u) \nu (\hbox {d}v) } , \end{aligned}$$

\(m\ge 0\), \(x,y\in \Lambda \).

Proof

By (3.14) and Proposition A.1, we have the approximation

$$\begin{aligned} \mu ^{(1)}_{\Phi \mid \Xi =z_{1:m}} (x)= & {} q_d l^{(1)}_{z_{1:m}} ( x ) + \sum _{z\in z_{1:m}} {\tilde{l}}_d(x\mid z) l^{(1)}_{z_{1:m}} (x;z) \nonumber \\\simeq & {} q_d J_\Phi ( x , x ) + \sum _{z\in z_{1:m}} \frac{ J_\Phi ( x , x ) {\tilde{l}}_d (z | x)}{ l_c (z ) + \int _{\Lambda } {\tilde{l}}_d (z | u ) J_\Phi ( u,u) \nu ( \hbox {d}u ) } , \qquad m\ge 0,\nonumber \\ \end{aligned}$$
(A.9)

hence by (A.8) and (A.9), we find

$$\begin{aligned}&\rho ^{(2)}_{\Phi \mid \Xi =z_{1:m}} (x,y) - \mu ^{(1)}_{\Phi , \Xi =z_{1:m}} (x) \mu ^{(1)}_{\Phi , \Xi =z_{1:m}} (y) \\&\quad \simeq - q_d J_\Phi ( x , x )J_\Phi ( y , y ) \bigg ( q_d + \sum _{z\in z_{1:m}} \frac{ {\tilde{l}}_d (z | x) + {\tilde{l}}_d (z | y)}{ s_c(z) } \bigg )\\&\qquad - J_\Phi ( x , x )J_\Phi ( y , y ) \sum _{z,z'\in z_{1:m}} \frac{ {\tilde{l}}_d (z | x){\tilde{l}}_d (z' | y)}{ s_c (z ) s_c (z' ) } \\&\quad + q_d^2 ( J_\Phi (x,x)J_\Phi (y,y)-J_\Phi (x,y)^2 ) + q_d ( J_\Phi (x,x)J_\Phi (y,y)-J_\Phi (x,y)^2 )\\&\qquad \sum _{z\in z_{1:m}} \frac{ {\tilde{l}}_d (z | x) + {\tilde{l}}_d (z | y)}{ s_c(z) } \\&\quad + \sum _{\begin{array}{c} z,z'\in z_{1:m} \\ z\not = z' \end{array}} \frac{ ( J_\Phi (x,x)J_\Phi (y,y)-J_\Phi (x,y)^2 ) {\tilde{l}}_d (z | x) {\tilde{l}}_d (z' | y) }{ s_c(z) s_c(z') - \int _{\Lambda ^2} J_\Phi (u,v)^2 {\tilde{l}}_d (z | u) {\tilde{l}}_d (z' | v) \nu (\hbox {d}u) \nu (\hbox {d}v) } \\&= - q^2_d J_\Phi (x,y)^2 - q_d J_\Phi (x,y)^2 \sum _{z\in z_{1:m}} \frac{ {\tilde{l}}_d (z | x) + {\tilde{l}}_d (z | y) }{ s_c(z) } \\&\quad - J_\Phi ( x , x ) J_\Phi ( y , y ) \sum _{z,z'\in z_{1:m}} \frac{ {\tilde{l}}_d (z | x) {\tilde{l}}_d (z' | y)}{ s_c (z ) s_c (z' ) } \\&\qquad + \sum _{\begin{array}{c} z,z'\in z_{1:m} \\ z\not = z' \end{array}} \frac{ ( J_\Phi (x,x)J_\Phi (y,y)-J_\Phi (x,y)^2 ) {\tilde{l}}_d (z | x) {\tilde{l}}_d (z' | y) }{ s_c(z) s_c(z') - \int _{\Lambda ^2} J_\Phi (u,v)^2 {\tilde{l}}_d (z | u) {\tilde{l}}_d (z' | v) \nu (\hbox {d}u) \nu (\hbox {d}v) } , \end{aligned}$$

\(m\ge 0\), and we conclude by (4.4), i.e.

$$\begin{aligned} ( K_{\Phi \mid \Xi =z_{1:m}} (x,y) )^2 = \mu ^{(1)}_{\Phi \mid \Xi =z_{1:m}} (x) \mu ^{(1)}_{\Phi \mid \Xi =z_{1:m}} (y) - \rho ^{(2)}_{\Phi \mid \Xi =z_{1:m}} (x,y) \end{aligned}$$

and (A.10).

The next result, which provides an approximation formula for the posterior covariance of Proposition 3.4, is a consequence of Proposition A.3 and (A.9).

Corollary A.4

Under (A.1)–(A.2) the posterior covariance of \(\Phi \) given that \(\Xi =z_{1:m}=(z_1,\ldots , z_m)\) is approximated as

$$\begin{aligned}&{ c^{(2)}_{\Phi \mid \Xi =z_{1:m}} (A,B) \simeq q_d \int _{A\cap B} J_\Phi ( x , x ) \nu ( dx ) - q^2_d \int _{A\times B} J_\Phi (x,y)^2 \nu ( dx ) \nu ( dy ) } \nonumber \\&\qquad - q_d \sum _{z\in z_{1:m}} \frac{ 1 }{ s_c (z ) } \int _{A\times B} J_\Phi (x,y)^2 \big ( {\tilde{l}}_d (z | x) + {\tilde{l}}_d (z | y) \big ) \nu ( dx ) \nu ( dy ) \displaystyle \nonumber \\&\qquad \displaystyle + \sum _{z\in z_{1:m}} \frac{1}{ s_c (z ) } \bigg ( \int _{A\cap B} {\tilde{l}}_d (z | x) J_\Phi ( x , x ) \nu (\hbox {d}x)\nonumber \\&\qquad - \frac{ \int _A {\tilde{l}}_d (z | x) J_\Phi ( x , x ) \nu (dx ) \int _B {\tilde{l}}_d (z | y) J_\Phi ( y , y ) \nu (\hbox {d}y) }{ s_c (z ) } \bigg ) \nonumber \\&\qquad + \sum _{\begin{array}{c} z,z'\in z_{1:m} \\ z\not = z' \end{array}} \frac{ \int _{\Lambda ^2} ( J_\Phi (x,x)J_\Phi (y,y)-J_\Phi (x,y)^2 ) {\tilde{l}}_d (z | x) {\tilde{l}}_d (z' | y) \nu (\hbox {d}x) \nu (\hbox {d}y) }{ s_c(z) s_c(z') - \int _{\Lambda ^2} J_\Phi (u,v)^2 {\tilde{l}}_d (z | u) {\tilde{l}}_d (z' | v) \nu (\hbox {d}u) \nu (\hbox {d}v) }, \quad m \ge 0.\nonumber \\ \end{aligned}$$
(A.10)

1.1 Conclusion

Our observations have shown that the performance of the multi-target tracking PPP-based standard PHD filter is degraded in the presence of target interaction such as repulsion. To address this issue, we have constructed a second-order DPP-based PHD filter based on Determinantal Point Processes which are able to model repulsion between targets, and can propagate variance and covariance information in addition to first-order target count estimates. We have derived posterior moment formulas for the estimation of DPPs after thinning and superposition with a Poisson Point Process (PPP), based on suitable approximation formulas. Our numerical experiments include an assessment of the spooky effect on disjoint domains, with negative correlation estimates which are consistent with the nature of DPPs. We have also compared the robustness and performance recovery of the DPP and PPP-PHD filters when subjected to sudden changes in target numbers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Privault, N., Teoh, T. Second-order multi-object filtering with target interaction using determinantal point processes. Math. Control Signals Syst. 32, 569–609 (2020). https://doi.org/10.1007/s00498-020-00271-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-020-00271-x

Keywords

Mathematics Subject Classification

Navigation