Skip to main content
Log in

On the scaling limit of finite vertex transitive graphs with large diameter

  • Original Paper
  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

Let (X n ) be an unbounded sequence of finite, connected, vertex transitive graphs such that |X n |=O(diam(X n )q) for some q>0. We show that up to taking a subsequence, and after rescaling by the diameter, the sequence (X n ) converges in the Gromov Hausdorff distance to some finite dimensional torus equipped with some invariant Finsler metric. The proof relies on a recent quantitative version of Gromov’s theorem on groups with polynomial growth obtained by Breuillard, Green and Tao. If X n is only roughly transitive and |X n |=O diam(X n δ) for δ >1 sufficiently small, we prove, this time by elementary means, that (X n ) converges to a circle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Abels: Specker-kompaktifizierungen von lokal kompakten topologischen gruppen, Mathematische Zeitschrift 135 (1974), 325–361.

    Article  MathSciNet  MATH  Google Scholar 

  2. V. N. Berestovskí: Homogeneous manifolds with an intrinsic metric. I, Sibirsk. Mat. Zh. 29 (1988), 17–29.

    Article  MathSciNet  Google Scholar 

  3. V. N. Berestovskí: Homogeneous manifolds with an intrinsic metric. II, Sibirsk. Mat. Zh. 30 (1989), 14–28.

    MathSciNet  Google Scholar 

  4. I. Benjamini and O. Schramm: Finite transitive graph embeddings into a hyperbolic metric space must stretch or squeeze, GAFA seminar, Springer LNM (2012), To appear.

    Google Scholar 

  5. I. Benjamini and A. Yadin: Harmonic measure in the presence of a spectral gap, arXiv:1402.0156.

  6. E. Breuillard: Geometry of groups of polynomial growth and shape of large balls, preprint.

  7. E. Breuillard and B. Green: Approximate groups I: the torsion free nilpotent case, J. de l’Institut de Math. de Jussieu 2011.

    Google Scholar 

  8. E. Breuillard, B. Green and T. Tao: The structure of approximate groups, Publ. Math. i.h.è.s. 116 (2012), 115–221.

    Article  MathSciNet  MATH  Google Scholar 

  9. E. Breuillard and E. Le Donne: On the rate of convergence to the asymptotic cone for nilpotent groups and subFinsler geometry, to appear in Proc. Natl. Acad. Sci.

  10. E. Breuillard and M. Tointon: Nilprogressions and groups with moderate growth, Adv. Math. 289 (2016), 1008–1055.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Bridson and A. Haefliger: Metric Spaces of Non-Positive Curvature, Grundl. der Math. Wiss. 319, Springer Verlag, 1999.

    Google Scholar 

  12. N. Bourbaki: Élèments de mathèmatiques, Groupes et algèbres de Lie, Chapitre 9, Springer, 1982.

    MATH  Google Scholar 

  13. D. Burago, Y. Burago and S. Ivanov: A Course in Metric Geometry, American Mathematical Society (2001).

    Book  MATH  Google Scholar 

  14. C. Champetier: L’espace des groupes de type fini, Topology 39 (2000), 657–680.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Cheeger and T. H. Colding: On the structure of spaces with Ricci curvature bounded below, III, J. Differential Geom. 54 (2000), 37–74.

    Article  MathSciNet  MATH  Google Scholar 

  16. W. W. Comfort and S. Negrepontis: The theory of ultrafilters, Berlin, New York, Springer-Verlag, 1974.

    Book  MATH  Google Scholar 

  17. M. DeVos and B. Mohar: Small separations in vertex-transitive graphs, Electronic Notes in Discrete Mathematics 24 (2006), 165–172.

    Article  MathSciNet  MATH  Google Scholar 

  18. G. A. Freiman: Foundations of a structural theory of set addition, translated from the Russian, Translations of Mathematical Monographs, Vol 37, American Mathematical Society, Providence, R. I. (1973), vii+108.

  19. K. Fukaya: Collapsing of Riemannian manifolds and eigenvalues of the laplace operator, Invent. Math. 87 (1987), 517–547.

    Article  MathSciNet  MATH  Google Scholar 

  20. K. Fukaya: Hausdorff convergence of Riemannian manifolds and its applications, Recent topics in differential and analytic geometry, 143-238, Adv. Stud. Pure Math. 18-I, Academic Press, Boston, MA, (1990).

    MATH  Google Scholar 

  21. K. Fukaya and T. Yamaguchi: The fundamental groups of almost nonnegatively curved manifolds, Annals of Mathematics 136 (1992), 253–333.

    Article  MathSciNet  MATH  Google Scholar 

  22. T. Gelander: A metric version of the Jordan-Turing theorem, Enseign. Math. 59 (2013), 1–12.

    Article  MathSciNet  Google Scholar 

  23. M. Gromov: Groups of polynomial growth and expanding maps, Publ. Math. IHES 53 (1981), 53–73.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Gromov: Carnot-Carathèodory spaces seen from within, in: Sub-Riemannian Geometry, Progress in Mathematics 144, edited by A. Bellaiche and J-J. Risler, 79–323, Birkauser (1996).

    Chapter  Google Scholar 

  25. M. Gromov: Metric structures for Riemannian and non-Riemannian spaces, volume 152 of Progress in Mathematics, Birkhäuser Boston Inc., Boston, MA, 1999. Based on the 1981 French original, with appendices by M. Katz, P. Pansu and S. Semmes.

  26. D. Kazhdan: On ε-representation, Israel J. Math. 43 (1982), 315–323.

    Article  MathSciNet  MATH  Google Scholar 

  27. K. Kuwae and T. Shioya: Convergence of spectral structures: a functional analytic theory and its applications to spectral geometry, Comm. Anal. Geom. 11 (2003), 599–673.

    Article  MathSciNet  MATH  Google Scholar 

  28. P. Lorimer: Vertex-transitive graphs: Symmetric graphs of prime valency, Journal of graph theory 8 (1984), 55–68.

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Lubotsky: Expander Graphs in Pure and Applied Mathematics, Bull. Amer. Math. Soc. 49 (2012), 113–162.

    Article  MathSciNet  Google Scholar 

  30. B. Kleiner: A new proof of Gromov’s theorem on groups of polynomial growth, Jour. AMS 23 (2010), 815–829.

    MathSciNet  MATH  Google Scholar 

  31. D. Montgomery and L. Zippin: Topological transformation groups, Interscience Publishers, New York-London, 1955.

    MATH  Google Scholar 

  32. P. Pansu: Croissance des boules et des gèodèsiques fermèes dans les nilvariètès, Ergodic Theory Dyn. Syst. 3 (1983), 415–445.

    Article  MATH  Google Scholar 

  33. F. Peter and H. Weyl: Die Vollständigkeit der primitiven Darstellungen einer geschlossenen kontinuierlichen Gruppe, Math. Ann. 97 (1927), 737–755.

    Article  MathSciNet  MATH  Google Scholar 

  34. C. E. Praeger, L. Pyber, P. Spiga and E. Szabó: The Weiss conjecture for locally primitive graphs with automorphism groups admitting composition factors of bounded rank, Proc. Amer. Math. Soc. 140 (2012), 2307–2318.

    Article  MathSciNet  MATH  Google Scholar 

  35. I. Z. Ruzsa: Generalized arithmetical progressions and sumsets, Acta Math. Hungar. 65 (1994), 379–388.

    Article  MathSciNet  MATH  Google Scholar 

  36. T. Sanders: On the Bogolyubov-Ruzsa lemma, Anal. PDE 5 (2012), 627–655.

    Article  MathSciNet  MATH  Google Scholar 

  37. Y. Shalom and T. Tao: A finitary version of Gromov’s polynomial growth theorem, Geom. Funct. Anal. 20 (2010), 1502–1547.

    Article  MathSciNet  MATH  Google Scholar 

  38. A. M. Turing: Finite approximations to Lie groups, Annals of Math. 39 (1938), 105–111.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itai Benjamini.

Additional information

This work was done while she was a student at the Weizmann Institute of Science, Rehovot, Israel.

Supported by ANR-09-BLAN-0059 and ANR-10-BLAN 0116.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benjamini, I., Finucane, H. & Tessera, R. On the scaling limit of finite vertex transitive graphs with large diameter. Combinatorica 37, 333–374 (2017). https://doi.org/10.1007/s00493-015-2975-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-015-2975-4

Mathematics Subject Classification (2000)

Navigation