Skip to main content
Log in

Comparing the responses of grain fed feedlot cattle under moderate heat load and during subsequent recovery with those of feed restricted thermoneutral counterparts: plasma biochemistry

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Responses to heat stress in ruminants reflect the integration of local climatic conditions, environment/production system and the animal’s homeostatic and homeorhetic capacities. Thus, the goal of ameliorating heat stress requires experimental settings that, within limits, closely resemble the target production system and cohort. We investigated the blood biochemical changes of two sequential cohorts of twelve 518 ± 23 kg grain fed Black Angus steers. Each cohort consisted of two treatments of 6 head/group: a thermally challenged (TC) treatment and a feed restricted thermoneutral (FRTN) treatment. Both groups were housed in climate controlled rooms for 19 days, with the TC group experiencing three distinct periods: PreChallenge, Challenge and Recovery. PreChallenge and Recovery delivered thermoneutral conditions, while Challenge consisted of 7 days of moderate diurnal heat load. The FRTN group was maintained in thermoneutral conditions at all times. Both groups were then relocated to outdoor pens for a further 40 days to detect any enduring change to metabolism as a consequence of the treatments. We compared blood biochemical responses of the treatments and inferred likely metabolic changes. Relative to the FRTN group, the TC animals experienced limited supply of triglycerides, cholesterol and glutamine during moderate heat load, suggesting constraints to energy metabolism. Lower blood urea during Recovery and in outdoor pens implied a requirement to capture N rather than allow its excretion. Altered liver enzyme profiles indicated a higher level of hepatic stress in the TC group. By the completion of feedlot finishing, the groups were not separable on most measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abeni F, Calamari L, Stefanini L (2007) Metabolic conditions of lactating Friesian cows during the hot season in the Po valley. 1. Blood indicators of heat stress. Int J Biometeorol 52:87–96. https://doi.org/10.1007/s00484-007-0098-3

    Article  Google Scholar 

  • Abumrad N, Yazigi N, Cersosimo E, Hourani H, Gedde S, Bulus N, Williams P (1990) Glutamine metabolism during starvation. J Enteral Parenter Nutr 14:71S-76S

    Article  CAS  Google Scholar 

  • Aggerbeck M, Garlatti M, Feilleux-Duche S, Veyssier C, Daheshia M, Hanoune J, Barouki R (1993) Regulation of the cytosolic aspartate aminotransferase housekeeping gene promoter by glucocorticoids, cAMP, and insulin. Biochemistry 32:9065–9072

    Article  CAS  Google Scholar 

  • Alhidary IA, Shini S, Al Jassim RAMA, Abudabos M, Gaughan JB (2015) Effects of selenium and vitamin E on performance, physiological response, and selenium balance in heat-stressed sheep. J Anim Sci 93:576–588. https://doi.org/10.2527/jas2014-8419

    Article  CAS  Google Scholar 

  • Ali BH, Hassan T, Musa N (1984) The effect of feed restriction on certain haematological indices, enzymes and metabolites in Nubian goats. Comp Biochem Physiol 79A:325–328

    CAS  Google Scholar 

  • Bailey C, Balch CC (1961) Saliva secretion and its relation to feeding in cattle. The composition and rate of secretion of parotid saliva in a small steer. Br J Nutr 15:371–383

    Article  CAS  Google Scholar 

  • Baumgard LH, Rhoads RP (2013) Effects of heat stress on postabsorptive metabolism and energetics. Annu Rev Anim Biosci 1:311–337. https://doi.org/10.1146/annurev-animal-031412-103644

    Article  CAS  Google Scholar 

  • Baumgard LH, Wheelock JB, Sanders SR, Moore CE, Green HB, Waldron MR, Rhoads RP (2011) Postabsorptive carbohydrate adaptations to heat stress and monensin supplementation in lactating Holstein cows. J Dairy Sci 94:5620–5633. https://doi.org/10.3168/jds.2011-4462

    Article  CAS  Google Scholar 

  • Beatty DT, Barnes A, Taylor E, Pethick D, McCarthy M, Maloney SK (2006) Physiological responses of Bos taurus and Bos indicus cattle to prolonged, continuous heat and humidity. J Anim Sci 84:972–985

    Article  CAS  Google Scholar 

  • Blum JW, Schnyder W, Kunz PL, Blom AK, Bickel H, Schürch A (1985) Reduced and compensatory growth: endocrine and metabolic changes during food restriction and refeeding in steers. J Nutr 115:417–424

    Article  CAS  Google Scholar 

  • Boag F, Weerakoon J, Ginsburg J, Havard CWH, Dandona P (1985) Diminished creatinine clearance in anorexia nervosa: reversal with weight gain. J Clin Pathol 38:60–63

    Article  CAS  Google Scholar 

  • Bobek P, Ginter E (1966) Metabolism of lipids in rats exposed to heat under conditions of a normal and a high fat-high cholesterol diet. J Nutr 89:373–379

    Article  CAS  Google Scholar 

  • Brown-Brandl TM, Eigenberg RA, Nienaber JA, Hahn GL (2005) Dynamic response indicators of heat stress in shaded and non-shaded feedlot cattle, part 1: analyses of indicators. Biosyst Eng 90:451–462. https://doi.org/10.1016/j.biosystemseng.2004.12.006

    Article  Google Scholar 

  • Bruce HL, Hewavitharana AK, Hunter RA (2008) Creatinine and pseudouridine in plasma and urine from Brahman-cross steers fed a low, medium or high plane of nutrition. Livst Sci 119:95–101. https://doi.org/10.1016/j.livsci.2008.03.006

    Article  Google Scholar 

  • Buchet R, Millán JL, Magne D (2013) Chapter 3. Multisystemic functions of alkaline phosphatases. In: Millán JL (ed) Phosphatase Modulators, Methods in Molecular Biology. Springer Science+Business Media, 1053:27–51. https://doi.org/10.1007/978-1-62703-562-0_3

  • Burrin DG, Ferrell CL, Britton RA, Bauer M (1990) Level of nutrition and visceral organ size and metabolic activity in sheep. Brit J Nutr 64:439–448. https://doi.org/10.1079/bjn19900044

    Article  CAS  Google Scholar 

  • Cabaraux JF, Kerrour M, van Eenaeme C, Dufrasne I, Istasse L, Hornick J-L (2003) Different modes of food restriction and compensatory growth in double-muscled Belgian Blue bulls: plasma metabolites and hormones. Anim Sci 77:205–214. https://doi.org/10.1017/S135772980005894X

    Article  CAS  Google Scholar 

  • Cersosimo E, Williams PE, Radosevich PM, Hoxworth BT, Lacy WW, Abumrad NN (1986) Role of glutamine in adaptations in nitrogen metabolism during fasting. Am J Physiol 250:(Endocrinol. Metab 13):E622–628

  • Chelikani PK, Ambrose JD, Keisler DH, Kennelly JJ (2004) Effect of short-term fasting on plasma concentrations of leptin and other hormones and metabolites in dairy cattle. Domest Anim Endocrinol 26:33–48. https://doi.org/10.1016/j.domaniend.2003.08.003

    Article  CAS  Google Scholar 

  • Colditz PJ, Kellaway RC (1972) The effect of diet and heat stress on feed intake, growth, and nitrogen metabolism in Friesian, F1 Brahman x Friesian, and Brahman heifers. Aust J Agric Res 23:717–725

    Article  Google Scholar 

  • Cole NA, Hutcheson DP (1985) Influence of realimentation diet on recovery of rumen activity and feed intake in beef steers. J Anim Sci 61:692–701

    Article  CAS  Google Scholar 

  • Cole NA, Purdy CW, Hallford DM (1988) Influence of fasting and postfast diet energy level on feed intake, feeding pattern and blood variables of lambs. J Anim Sci 66:798–805

    Article  CAS  Google Scholar 

  • Collier RJ, Baumgard LH, Zimbelman RB, Xiao Y (2019) Heat stress: physiology of acclimation and adaptation. Anim Front 9:13–19. https://doi.org/10.1093/af/vfy031

    Article  Google Scholar 

  • Collier RJ, Limesand SW, Rhoads ML, Rhoads RP, Baumgard LH (2009) In: Rauw WM (ed) Chapter 5. Homeorhesis during heat stress. Resource allocation theory applied to farm animals. CAB International, pp 72–88

  • Connor EE, Kahl S, Elsasser TH, Parker JS, Li RW, van Tassell CP, Baldwin VI, RL, Barao SM (2009) Enhanced mitochondrial complex gene function and reduced liver size may mediate improved feed efficiency of beef cattle during compensatory growth.Funct Integr Genomics 10:39–51.https://doi.org/10.1007/s10142-009-0138-7

  • Cooke RF, Cardoso RC, Cerri RLA, Lamb GC, Pohler KG, Riley DG, Vasconcelos JLM (2020) Cattle adapted to tropical and subtropical environments: genetic and reproductive considerations. J Anim Sci 98:1–14. https://doi.org/10.3168/jds.2014-8442

    Article  CAS  Google Scholar 

  • Cowley FC, Barber DG, Houlihan AV, Poppi DP (2015) Immediate and residual effects of heat stress and restricted intake on milk protein and casein composition and energy metabolism. J Dairy Sci 98:2356–2368

    Article  CAS  Google Scholar 

  • Curi R, Lagranha CJ, Doi SQ, Sellitti DF, Procopio J, Pithon-Curi TC, Corless M, Newsholme P (2005) Molecular mechanisms of glutamine action. J Cell Physiol 204:392–401. https://doi.org/10.1002/jcp.20339

    Article  CAS  Google Scholar 

  • DiMarco NM, Beitz DC, Whitehurst GB (1981) Effect of fasting on free fatty acid, glycerol and cholesterol concentrations in blood plasma and lipoprotein lipase activity in adipose tissue of cattle. J Anim Sci 52:75–82

    Article  CAS  Google Scholar 

  • Doelman J, Cao H, Purdie NG, Kim JJM, Swanson K, Osborne VR, Tey J, Ali A, Feng Z, Karrow NA, Cant JP (2012) Transcript profiling of the ruminant liver indicates a unique program of transcriptional regulation of ketogenic enzymes during food restriction. Comp Biochem Physiol Part D 7:303–310. https://doi.org/10.1016/j.cbd.2012.06.002

    Article  CAS  Google Scholar 

  • Dunshea FR, Leury BJ, Fahri F, DiGiacomo K, Hung A, Chauhan S, Clarke IA, Collier R, Little S, Baumgard L, Gaughan JB (2013) Amelioration of thermal stress impacts in dairy cows. Anim Prod Sci 53:965–975. https://doi.org/10.1071/AN12384

    Article  Google Scholar 

  • Eisemann JH, Nienaber JA (1990) Tissue and whole-body oxygen uptake in fed and fasted steers. Brit J Nutr 64:399–411. https://doi.org/10.1079/bjn19900041

    Article  CAS  Google Scholar 

  • Ellenberger MA, Johnson DE, Carstens GE, Hossner KL, Holland MD, Nett TM, Nockels CF (1989) Endocrine and metabolic changes during altered growth rates in beef cattle. J Anim Sci 67:1446–1454

    Article  CAS  Google Scholar 

  • El-Nouty FD, Elbanna IM, Davis TP, Johnson HD (1980) Aldosterone and ADH response to heat and dehydration in cattle. J Appl Physiol 48:249–255

    Article  CAS  Google Scholar 

  • Fox DG, Johnson RR, Preston RL, Dockerty TR, Klosterman EW (1972) Protein and energy utilization during compensatory growth in beef cattle. J Anim Sci 34:310–318

    Article  Google Scholar 

  • Gao ST, Gu J, Quan SY, Nan XM, Sanz Fernandez M, Baumgard LH, Bu DP (2017) The effects of heat stress on protein metabolism in lactating Holstein cows. J Dairy Sci 100:5040–5049. https://doi.org/10.3168/jds.2016-11913

    Article  CAS  Google Scholar 

  • Garner JB, Douglas M, Williams SRO, Wales WJ, Marett LC, DiGiacomo K, Leury BJ, Hayes BJ (2017) Responses of dairy cows to short-term heat stress in controlled-climate chambers. Anim Prod Sci 57:1233–1241. https://doi.org/10.1071/AN16472

    Article  Google Scholar 

  • Gerich JE (2000) Physiology of glucose homeostasis. Diabetes Obes Metab 2:2345–2350

    Article  Google Scholar 

  • Gross JJ, Kessler EC, Albrecht C, Bruckmaier RM (2015) Response of the cholesterol metabolism to a negative energy balance in dairy cows depends on the lactational stage. PLoS ONE 10:e0121956. https://doi.org/10.1371/journal.pone.0121956

    Article  CAS  Google Scholar 

  • Gu Z, Li L, Tang S, Liu C, Fu X, Shi Z, Mao H (2018) Metabolomics reveals that crossbred dairy buffaloes are more thermotolerant than Holstein cows under chronic heat stress. J Agric Food Chem 66:12889–12897. https://doi.org/10.1021/acs.jafc.8b02862

    Article  CAS  Google Scholar 

  • Hales JRS (1973) Effects of exposure to hot environments on the regional distribution of blood flow and on cardiorespiratory function in sheep. Pflügers Arch 344:133–148

    Article  CAS  Google Scholar 

  • Hall LW, Villar F, Chapman JD, McLean DJ, Xiao Y, Collier JL, Collier RJ (2018) An evaluation of an immunomodulatory feed ingredient in heat-stressed lactating Holstein cows: effects on hormonal, physiological, and production responses. J Dairy Sci 101:7095–7105. https://doi.org/10.3168/jds.2017-14210

    Article  CAS  Google Scholar 

  • Hanigan MH, Ricketts WA (1993) Extracellular glutathione is a source of cysteine for cells that express 7-glutamyl transpeptidase. Biochem 32:6302–6306

    Article  CAS  Google Scholar 

  • Havel RD, Felts JM, Van Duyne CM (1962) Formation and fate of endogenous triglycerides in blood plasma of rabbits. J Lipid Res 3:297–307

    Article  CAS  Google Scholar 

  • Hayden JM, Williams JE, Collier RJ (1993) Plasma growth hormone, insulin-like growth factor, insulin, and thyroid hormone association with body protein and fat accretion in steers undergoing compensatory gain after dietary energy restriction. J Anim Sci 71:3327–3338

    Article  CAS  Google Scholar 

  • Heitmann RN, Bergman EN (1980) Integration of amino acid metabolism in sheep: effects of fasting and acidosis. Am J Physiol 239 (Endocrinol. Metab. 2):E248-E254

  • Hogan JP, Petherick J, Phillips CJC (2007) The physiological and metabolic impacts on sheep and cattle of feed and water deprivation before and during transport. Nutr Res Rev 20:17–28. https://doi.org/10.1017/S0954422407745006

    Article  CAS  Google Scholar 

  • Horio Y, Tanaka T, Taketoshi M, Uno T, Wada H (1988) Rat cytosolic aspartate aminotransferase: regulation of its mRNA and contribution to gluconeogenesis. J Biochem 103:805–808

    Article  CAS  Google Scholar 

  • Hornick J-L, Van Eenaeme C, Diez M, Minet V, Istasse L (1998) Different periods of feed restriction before compensatory growth in Belgian Blue bulls: II. Plasma metabolites and hormones. J Anim Sci 76:260–271

    Article  CAS  Google Scholar 

  • Josekutty J, Iqbal J, Iwawaki T, Kohno K, Hussain MM (2013) Microsomal triglyceride transfer protein inhibition induces endoplasmic reticulum stress and increases gene transcription via Ire α/cJun to enhance plasma ALT/AST. J Biol Chem 288:14372–14383. https://doi.org/10.1074/jbc.M113.459602

    Article  CAS  Google Scholar 

  • Jouanneteau J, Pérè G (1979) Studies on the effect of heat exposure on lipid metabolism in rat: modifications of lipids in plasma, erythrocytes and liver. J Thermal BioI 4:15–22

    Article  CAS  Google Scholar 

  • Kamiya M, Kamiya Y, Tanaka M, Oki T, Nishiba Y, Shioya S (2006) Effects of high ambient temperature and restricted feed intake on urinary and plasma 3-methylhistidine in lactating Holstein cows. Anim Sci J 77:201–207. https://doi.org/10.1111/j.1740-0929.2006.00338.x

    Article  CAS  Google Scholar 

  • Keenan DM, Allardyce CJ (1986) Changes in plasma creatinine levels of sheep during submaintenance feeding. Aust Vet J 63:29–30

    Article  CAS  Google Scholar 

  • Keogh K, Waters SM, Kelly AK, Wylie ARG, Sauerwein H, Sweeney T, Kenny DA (2015) Feed restriction and subsequent realimentation in Holstein Friesian bulls: II. Effect on blood pressure and systemic concentrations of metabolites and metabolic hormones. J Anim Sci 93:3590–3601. https://doi.org/10.2527/jas2014-8471

    Article  CAS  Google Scholar 

  • Knowles TG, Brown SN, Warriss PD, Phillips AJ, Dolan SK, Hunt P, Ford JE, Edwards JE, Watkins PE (1995) Effects on sheep of transport by road for up to 24 hours. Vet Rec 136:431–438

    Article  CAS  Google Scholar 

  • Koch F, Lamp O, Eslamizad M, Weitzel J, Kuhla B (2016) Metabolic response to heat stress in late-pregnant and early lactation dairy cows: implications to liver-muscle crosstalk. PLoS ONE 11:e0160912. https://doi.org/10.1371/journal.pone.0160912

    Article  CAS  Google Scholar 

  • Koenig G, Seneff S (2015) Gamma-glutamyltransferase: a predictive biomarker of cellular antioxidant inadequacy and disease risk. Dis Markers. https://doi.org/10.1155/2015/818570

    Article  Google Scholar 

  • Kume S, Toharmat T, Kobayashi N (1998) Effect of restricted feed intake of dams and heat stress on mineral status of newborn calves. J Dairy Sci 81:1581–1590

    Article  CAS  Google Scholar 

  • Matés JM, Segura JA, Campos-Sandoval JA, Lobo C, Alonso L, Alonso FJ, Márquez J (2009) Glutamine homeostasis and mitochondrial dynamics. Int J Biochem Cell Biol 41:2051–2061. https://doi.org/10.1016/j.biocel.2009.03.003

    Article  CAS  Google Scholar 

  • McCue MD, Terblanche JS, Benoit JB (2017) Learning to starve: impacts of food limitation beyond the stress period. J Exp Biol 220:4330–4338. https://doi.org/10.1242/jeb.157867

    Article  Google Scholar 

  • McDowell RE, Mood EG, Van Soest PJ, Lehmann RP, Ford GL (1969) Effect of heat stress on energy and water utilization of lactating cows. J Dairy Sci 52:188–194

    Article  CAS  Google Scholar 

  • McGuire MA, Beede DK, DeLorenzo MA, Wilcox C, Huntington GB, Reynold CK (1989) Collier RJ (1989) Effects of thermal stress and level of feed intake on portal plasma flow and net fluxes of metabolites in lactating Holstein cows. J Anim Sci 67:1050–1060

    Article  CAS  Google Scholar 

  • Mefferd RB, Nyman MA, Webster WW (1958) Whole body lipid metabolism of rats after chronic exposure to adverse environments. Am J Physiol 195:744–746

    Article  CAS  Google Scholar 

  • Noble RC, O’Kelly JC, Moore JH (1973) Observations on changes in lipid composition and lecithin-cholesterol-acyl transferase reaction of bovine plasma induced by heat exposure. Lipids 8:216–223

    Article  CAS  Google Scholar 

  • Noble RC, Mabon RM, Jenkinson DM (1976) The effects of exposure to warm environments on bovine plasma lipid composition. Res Vet Sci 21:90–93

    Article  CAS  Google Scholar 

  • O’Brien MD, Rhoads RP, Sanders SR, Duff GC, Baumgard LH (2010) Metabolic adaptations to heat stress in growing cattle. Domest Anim Endocrinol 38:86–94. https://doi.org/10.1016/j.domaniend.2009.08.005

    Article  CAS  Google Scholar 

  • O’Kelly JC (1973) Plasma lipid changes in genetically different types of cattle during hyperthermia. Comp Biochem Physiol 44A:313–320

    Article  Google Scholar 

  • O’Kelly JC (1986) Influence of dietary fat on some metabolic responses of cattle to hyperthermia induced by heat exposure. Comp Biochem Physiol 87:671–682

    Google Scholar 

  • O’Kelly JC, Reich HP (1975) Plasma lipid changes in cattle during chronic hyperthermia induced by heat exposure and by pyrogen. Comp Biochem Physiol 51B:283–288

    Google Scholar 

  • Obitsu T, Kamiya M, Kamiya Y, Tanaka M, Sugino T, Taniguchi K (2011) Effects of high ambient temperature on urea-nitrogen recycling in lactating dairy cows. Anim Sci J 82:531–536. https://doi.org/10.1111/j.1740-0929.2011.00880.x

    Article  CAS  Google Scholar 

  • Olbrich SE, Martz FA, Tumbleson ME, Johnson HD, Wilderbrand ES (1972) Effects of constant environmental temperatures of 10°C and 31°C on serum biochemical and hematologic measurements of heat-tolerant and cold-tolerant cattle. Comp Biochem Physiol 41A:255–266

    Article  Google Scholar 

  • Rhoads ML, Rhoads RP, VanBaale MJ, Collier RJ, Sanders SR, Weber WJ, Crooker BA, Baumgard LH (2009) Effects of heat stress and plane of nutrition on lactating Holstein cows: I. Production, metabolism, and aspects of circulating somatotropin. J Dairy Sci 92:1986–1997. https://doi.org/10.3168/jds.2008-1641

    Article  CAS  Google Scholar 

  • Rhoads RP, Baumgard LH, Suagee JK (2013) Metabolic priorities during heat stress with an emphasis on skeletal muscle. J Anim Sci 91:2492–2503. https://doi.org/10.2527/jas2012-6120

    Article  CAS  Google Scholar 

  • Richmond CE, Lunt DK, Greene LW, Byers FM (1988) Effects of dietary restriction and subsequent re-alimentation on liver mass in growing/finishing beef steers. Nutr Rep Int 381:501–507

    Google Scholar 

  • Rico AG, Braun JP, Benard P, Thouveneot JP (1977) Blood and tissue distribution of gamma glutamyl transferase in the cow. J Dairy Sci 60:1283–1287

    Article  CAS  Google Scholar 

  • Rule DC, Beitz DC, de Boer G, Lyle RR, Trenkle AH, Young JW (1985) Changes in hormone and metabolite concentrations in plasma of steers during a prolonged fast. J Anim Sci 61:868–875

    Article  CAS  Google Scholar 

  • Sansinanea A, Cerone S, Virkel G, Streitenberger S, Garcia M, Auza N (2000) Nutritional condition affects the hepatic antioxidant systems in steers. Vet Res Comm 24:517–524

    Article  CAS  Google Scholar 

  • Savary-Auzeloux I, Durand D, Gruffat D, Bauchart D, Ortigues-Marty I (2008) Food restriction and refeeding in lambs influence muscle antioxidant status. Animal 2:738–745. https://doi.org/10.1017/S1751731108001742

    Article  CAS  Google Scholar 

  • Sävendahl L, Underwood LE (1999) Fasting increases serum total cholesterol, LDL cholesterol and Apolipoprotein B in healthy, nonobese humans. J Nutr 129:2005–2008

    Article  Google Scholar 

  • Scharf B, Carroll JA, Riley DG, Chase CC Jr, Coleman SW, Keisler DH, Weaber RL, Spiers DE (2010) Evaluation of physiological and blood serum differences in heat-tolerant (Romosinuano) and heat-susceptible (Angus) Bos taurus cattle during controlled heat challenge. J Anim Sci 88:2321–2336. https://doi.org/10.2527/jas.2009-2551

    Article  CAS  Google Scholar 

  • Schneider PL, Beede DK, Wilcox CJ (1988) Nycterohemeral patterns of acid-base status, mineral concentrations and digestive function of lactating cows in natural or chamber heat stress environments. J Anim Sci 66:112–125

    Article  CAS  Google Scholar 

  • Seif SM, Johnson HD, Hahn L (1973) Environmental heat and partial water restriction effects on body fluid spaces, water loss, body temperature, and metabolism of Holstein cows. J Dairy Sci 56:581–586

    Article  CAS  Google Scholar 

  • Slimen IB, Najar T, Ghram A, Abdrrabba M (2016) Heat stress effects on livestock: molecular, cellular and metabolic aspects, a review. J Anim Physiol Anim Nutr 100:401–412. https://doi.org/10.1111/jpn.12379

    Article  Google Scholar 

  • Sookoian S, Pirola CJ (2015) Liver enzymes, metabolomics and genome-wide association studies: from systems biology to the personalized medicine. World J Gastroenterol 21:711–725. https://doi.org/10.3748/wjg.v21.i3.711

    Article  Google Scholar 

  • Sullivan ML, Wijffels G, George A, Al-Hosni YA, Olm J, Gaughan JB (2022) Elliptical and linear relationships with rumen temperature support a homeorhetic trajectory for DMI during recovery of feedlot cattle exposed to moderate heat load. J Anim Sci 100:1–15. https://doi.org/10.1093/jas/skac127

  • Taskinen M-R, Nikkilä EA (1979) Effects of caloric restriction on lipid metabolism in man: changes of tissue lipoprotein lipase activities and of serum lipoproteins. Atherosclerosis 32:289–299

    Article  CAS  Google Scholar 

  • Teleni E (1993) Catabolism and synthesis of amino acids in skeletal muscle: their significance in monogastric mammals and ruminants. Aust J Agric Res 44:443–461

    Article  CAS  Google Scholar 

  • Teusink B, Voshol PJ, Dahlmans VEH, Rensen PCN, Pijl H, Romijn JA, Havekes LM (2003) Contribution of fatty acids released from lipolysis of plasma triglycerides to total plasma fatty acid flux and tissue-specific fatty acid uptake. Diabetes 52:614–620

    Article  CAS  Google Scholar 

  • Vogel KD, Claus JR, Grandin T, Oetzel GR, Schaefer DM (2011) Effect of water and feed withdrawal and health status on blood and serum components, body weight loss, and meat carcass characteristics of Holstein slaughter cows. J Anim Sci 89:538–548. https://doi.org/10.2527/jas.2009-2675

    Article  CAS  Google Scholar 

  • Wheelock JB, Rhoads RP, VanBaale MJ, Sanders SR, Baumgard LH (2010) Effects of heat stress on energetic metabolism in lactating Holstein cows. J Dairy Sci 93:644–655. https://doi.org/10.3168/jds.2009-2295

    Article  CAS  Google Scholar 

  • Xiao D, Zeng L, Yao K, Kong X, Wu G, Yin Y (2016) The glutamine-alpha-ketoglutarate (AKG) metabolism and its nutritional implications. Amino Acids 48:2067–2080. https://doi.org/10.1007/s00726-016-2254-8

    Article  CAS  Google Scholar 

  • Yambayamba ESK, Aalhus JL, Price MA, Jones SDM (1996) Glycogen metabolites and meat quality in feed-restricted re-fed beef heifers. Can J Anim Sci 76:517–522

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the MLA for their support. The authors are highly appreciative of Drs Ian Colditz and Dennis Poppi for their thoughtful insights and advice in finalising this manuscript.

Funding

Meat and Livestock Australia (MLA) funded this work through the Heat Stress Nutrition Project B.FLT.0157.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gene Wijffels.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 153 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wijffels, G., Sullivan, M.L., Stockwell, S. et al. Comparing the responses of grain fed feedlot cattle under moderate heat load and during subsequent recovery with those of feed restricted thermoneutral counterparts: plasma biochemistry. Int J Biometeorol 66, 2205–2221 (2022). https://doi.org/10.1007/s00484-022-02349-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-022-02349-4

Keywords

Navigation