Skip to main content

Advertisement

Log in

Spatiotemporal variations of extreme low temperature for emergency transport: a nationwide observational study

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Although recent studies have investigated the effect of extreme heat on emergency transport, few have investigated the spatiotemporal variations of extreme low temperature for emergency transport on a national scale. Data pertaining to emergency ambulance transport and weather variation in the 47 prefectures of Japan between 2007 and 2010 were obtained. Nonlinear and delayed relationships between temperature and morbidity were assessed using a two-stage analysis. First, a Poisson regression analysis allowing for overdispersion in a distributed lag nonlinear model was used to estimate the prefecture-specific effects of temperature on morbidity. Second, a multivariate meta-analysis was applied to pool estimates on a national level. Of 15,868,086 emergency transports over the study period, 5,375,621 emergency transports were reported during the winter months (November through February). The overall cumulative relative risk (RR) at the first percentile vs. the minimum morbidity percentile was 1.24 (95 % CI = 1.15–1.34) for all causes, 1.50 (95 % CI = 1.30–1.74) for cardiovascular diseases, and 1.59 (95 % CI = 1.33–1.89) for respiratory diseases. There were differences in the temporal variations between extreme low temperature and respiratory disease morbidity. Spatial variation between prefectures was observed for all causes (Cochran Q test, p < 0.001; I 2 = 34.0 %) and respiratory diseases (Cochran Q test, p = 0.026; I 2 = 18.2 %); however, there was no significant spatial heterogeneity for cardiovascular diseases (Cochran Q test, p = 0.413; I 2 = 2.0 %). Our findings indicated that there were differences in the spatiotemporal variations of extreme low temperatures for emergency transport during winter in Japan. Our findings highlight the importance of further investigating to identify social and environmental factors, which can be responsible for spatial heterogeneity between prefectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Analitis A, Katsouyanni K, Biggeri A, Baccini M, Forsberg B, Bisanti L, Kirchmayer U, Ballester F, Cadum E, Goodman PG, Hojs A, Sunyer J, Tiittanen P, Michelozzi P (2008) Effects of cold weather on mortality: results from 15 European cities within the PHEWE project. Am J Epidemiol 168(12):1397–1408. doi:10.1093/aje/kwn266

    Article  CAS  Google Scholar 

  • Baccini M, Biggeri A, Accetta G, Kosatsky T, Katsouyanni K, Analitis A, Anderson HR, Bisanti L, D’Ippoliti D, Danova J, Forsberg B, Medina S, Paldy A, Rabczenko D, Schindler C, Michelozzi P (2008) Heat effects on mortality in 15 European cities. Epidemiology 19(5):711–719. doi:10.1097/EDE.0b013e318176bfcd

    Article  Google Scholar 

  • Barnett AG, Dobson AJ, McElduff P, Salomaa V, Kuulasmaa K, Sans S, Project WM (2005) Cold periods and coronary events: an analysis of populations worldwide. J Epidemiol Community Health 59(7):551–557. doi:10.1136/jech.2004.028514

    Article  Google Scholar 

  • Bassil KL, Cole DC, Moineddin R, Lou W, Craig AM, Schwartz B, Rea E (2011) The relationship between temperature and ambulance response calls for heat-related illness in Toronto, Ontario, 2005. J Epidemiol Community Health 65(9):829–831. doi:10.1136/jech.2009.101485

    Article  Google Scholar 

  • Basu R, Feng WY, Ostro BD (2008) Characterizing temperature and mortality in nine California counties. Epidemiology 19(1):138–145. doi:10.1097/EDE.0b013e31815c1da7

    Article  Google Scholar 

  • Basu R, Pearson D, Malig B, Broadwin R, Green R (2012) The effect of high ambient temperature on emergency room visits. Epidemiology 23(6):813–820. doi:10.1097/EDE.0b013e31826b7f97

    Article  Google Scholar 

  • Basu R, Samet JM (2002) Relation between elevated ambient temperature and mortality: a review of the epidemiologic evidence. Epidemiol Rev 24(2):190–202

    Article  Google Scholar 

  • Braga AL, Zanobetti A, Schwartz J (2002) The effect of weather on respiratory and cardiovascular deaths in 12 U.S. cities. Environ Health Perspect 110(9):859–863

    Article  Google Scholar 

  • Conlon KC, Rajkovich NB, White-Newsome JL, Larsen L, O’Neill MS (2011) Preventing cold-related morbidity and mortality in a changing climate. Maturitas 69(3):197–202. doi:10.1016/j.maturitas.2011.04.004

    Article  Google Scholar 

  • Donaldson GC, Keatinge WR (1997) Mortality related to cold weather in elderly people in southeast England, 1979-94. BMJ 315(7115):1055–1056

    Article  CAS  Google Scholar 

  • Gasparrini A, Armstrong B (2013) Reducing and meta-analysing estimates from distributed lag non-linear models. BMC Med Res Methodol 13:1. doi:10.1186/1471-2288-13-1

    Article  Google Scholar 

  • Gasparrini A, Armstrong B, Kenward MG (2012) Multivariate meta-analysis for non-linear and other multi-parameter associations. Stat Med 31(29):3821–3839. doi:10.1002/sim.5471

    Article  CAS  Google Scholar 

  • Gasparrini A, Guo Y, Hashizume M, Kinney PL, Petkova EP, Lavigne E, Zanobetti A, Schwartz JD, Tobias A, Leone M, Tong S, Honda Y, Kim H, Armstrong BG (2015a) Temporal variation in heat-mortality associations: a multicountry study. Environ Health Perspect. doi:10.1289/ehp.1409070

    Google Scholar 

  • Gasparrini A, Guo Y, Hashizume M, Lavigne E, Zanobetti A, Schwartz J, Tobias A, Tong S, Rocklov J, Forsberg B, Leone M, De Sario M, Bell ML, Guo YL, Wu CF, Kan H, Yi SM, de Sousa Zanotti Stagliorio Coelho M, Saldiva PH, Honda Y, Kim H, Armstrong B (2015b) Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet. doi:10.1016/S0140-6736(14)62114-0

    Google Scholar 

  • Gasparrini A, Leone M (2014) Attributable risk from distributed lag models. BMC Med Res Methodol 14:55. doi:10.1186/1471-2288-14-55

    Article  Google Scholar 

  • Green RS, Basu R, Malig B, Broadwin R, Kim JJ, Ostro B (2010) The effect of temperature on hospital admissions in nine California counties. Int J Public Health 55(2):113–121. doi:10.1007/s00038-009-0076-0

    Article  Google Scholar 

  • Guo Y, Gasparrini A, Armstrong B, Li S, Tawatsupa B, Tobias A, Lavigne E, de Sousa Zanotti Stagliorio Coelho M, Leone M, Pan X, Tong S, Tian L, Kim H, Hashizume M, Honda Y, Guo YL, Wu CF, Punnasiri K, Yi SM, Michelozzi P, Saldiva PH, Williams G (2014) Global variation in the effects of ambient temperature on mortality: a systematic evaluation. Epidemiology 25(6):781–789. doi:10.1097/EDE.0000000000000165

    Article  Google Scholar 

  • Hagihara A, Hasegawa M, Hinohara Y, Abe T, Motoi M (2013) The aging population and future demand for emergency ambulances in Japan. Intern Emerg Med 8(5):431–437. doi:10.1007/s11739-013-0956-4

    Article  Google Scholar 

  • Hajat S, Chalabi Z, Wilkinson P, Erens B, Jones L, Mays N (2016) Public health vulnerability to wintertime weather: time-series regression and episode analyses of national mortality and morbidity databases to inform the Cold Weather Plan for England. Public Health. doi:10.1016/j.puhe.2015.12.015

    Google Scholar 

  • Hajat S, Haines A (2002) Associations of cold temperatures with GP consultations for respiratory and cardiovascular disease amongst the elderly in London. Int J Epidemiol 31(4):825–830

    Article  CAS  Google Scholar 

  • Halonen JI, Zanobetti A, Sparrow D, Vokonas PS, Schwartz J (2010) Associations between outdoor temperature and markers of inflammation: a cohort study. Environmental health : a global access science source 9:42. doi:10.1186/1476-069X-9-42

    Article  Google Scholar 

  • Hartz DA, Golden JS, Sister C, Chuang WC, Brazel AJ (2012) Climate and heat-related emergencies in Chicago, Illinois (2003-2006). Int J Biometeorol 56(1):71–83. doi:10.1007/s00484-010-0398-x

    Article  Google Scholar 

  • Healy JD (2003) Excess winter mortality in Europe: a cross country analysis identifying key risk factors. J Epidemiol Community Health 57(10):784–789

    Article  CAS  Google Scholar 

  • Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558. doi:10.1002/sim.1186

    Article  Google Scholar 

  • Hong YC, Kim H, Oh SY, Lim YH, Kim SY, Yoon HJ, Park M (2012) Association of cold ambient temperature and cardiovascular markers. Sci Total Environ 435-436:74–79. doi:10.1016/j.scitotenv.2012.02.070

    Article  CAS  Google Scholar 

  • Hong YC, Rha JH, Lee JT, Ha EH, Kwon HJ, Kim H (2003) Ischemic stroke associated with decrease in temperature. Epidemiology 14(4):473–478. doi:10.1097/01.ede.0000078420.82023.e3

    Google Scholar 

  • Lavigne E, Gasparrini A, Wang X, Chen H, Yagouti A, Fleury MD, Cakmak S (2014) Extreme ambient temperatures and cardiorespiratory emergency room visits: assessing risk by comorbid health conditions in a time series study. Environmental health : a global access science source 13(1):5. doi:10.1186/1476-069X-13-5

    Article  Google Scholar 

  • Le Tertre A, Lefranc A, Eilstein D, Declercq C, Medina S, Blanchard M, Chardon B, Fabre P, Filleul L, Jusot JF, Pascal L, Prouvost H, Cassadou S, Ledrans M (2006) Impact of the 2003 heatwave on all-cause mortality in 9 French cities. Epidemiology 17(1):75–79

    Article  Google Scholar 

  • Li Y, Ma Z, Zheng C, Shang Y (2015) Ambient temperature enhanced acute cardiovascular-respiratory mortality effects of PM2.5 in Beijing, China. Int J Biometeorol 59(12):1761–1770. doi:10.1007/s00484-015-0984-z

    Article  Google Scholar 

  • Mastrangelo G, Fedeli U, Visentin C, Milan G, Fadda E, Spolaore P (2007) Pattern and determinants of hospitalization during heat waves: an ecologic study. BMC Public Health 7:200. doi:10.1186/1471-2458-7-200

    Article  Google Scholar 

  • Medina-Ramon M, Zanobetti A, Cavanagh DP, Schwartz J (2006) Extreme temperatures and mortality: assessing effect modification by personal characteristics and specific cause of death in a multi-city case-only analysis. Environ Health Perspect 114(9):1331–1336

    Article  Google Scholar 

  • Norris RM (1998) Fatality outside hospital from acute coronary events in three British health districts, 1994-5. United Kingdom Heart Attack Study Collaborative Group. BMJ 316(7137):1065–1070

    CAS  Google Scholar 

  • O’Neill MS, Zanobetti A, Schwartz J (2003) Modifiers of the temperature and mortality association in seven US cities. Am J Epidemiol 157(12):1074–1082

    Article  Google Scholar 

  • Ohshige K, Hori Y, Tochikubo O, Sugiyama M (2006) Influence of weather on emergency transport events coded as stroke: population-based study in Japan. Int J Biometeorol 50(5):305–311. doi:10.1007/s00484-005-0018-3

    Article  Google Scholar 

  • Onozuka D, Hagihara A (2015) All-cause and cause-specific risk of emergency transport attributable to temperature: a nationwide study. Medicine (Baltimore) 94(51):e2259. doi:10.1097/MD.0000000000002259

    Article  Google Scholar 

  • Onozuka D, Hagihara A (2016) Spatial and temporal variation in emergency transport during periods of extreme heat in Japan: a nationwide study. Sci Total Environ 544:220–229. doi:10.1016/j.scitotenv.2015.11.098

    Article  CAS  Google Scholar 

  • Rucker G, Schwarzer G, Carpenter JR, Schumacher M (2008) Undue reliance on I(2) in assessing heterogeneity may mislead. BMC Med Res Methodol 8:79. doi:10.1186/1471-2288-8-79

    Article  Google Scholar 

  • Schaffer A, Muscatello D, Broome R, Corbett S, Smith W (2012) Emergency department visits, ambulance calls, and mortality associated with an exceptional heat wave in Sydney, Australia, 2011: a time-series analysis. Environmental health : a global access science source 11(1):3. doi:10.1186/1476-069X-11-3

    Article  Google Scholar 

  • Semenza JC, Rubin CH, Falter KH, Selanikio JD, Flanders WD, Howe HL, Wilhelm JL (1996) Heat-related deaths during the July 1995 heat wave in Chicago. N Engl J Med 335(2):84–90. doi:10.1056/NEJM199607113350203

    Article  CAS  Google Scholar 

  • Stafoggia M, Forastiere F, Agostini D, Biggeri A, Bisanti L, Cadum E, Caranci N, de’ Donato F, De Lisio S, De Maria M, Michelozzi P, Miglio R, Pandolfi P, Picciotto S, Rognoni M, Russo A, Scarnato C, Perucci CA (2006) Vulnerability to heat-related mortality: a multicity, population-based, case-crossover analysis. Epidemiology 17(3):315–323. doi:10.1097/01.ede.0000208477.36665.34

    Article  Google Scholar 

  • Stocker T, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2014) Climate change 2013: the physical science basis. Cambridge University Press, Cambridge and New York

    Google Scholar 

  • Theoharatos G, Pantavou K, Mavrakis A, Spanou A, Katavoutas G, Efstathiou P, Mpekas P, Asimakopoulos D (2010) Heat waves observed in 2007 in Athens, Greece: synoptic conditions, bioclimatological assessment, air quality levels and health effects. Environ Res 110(2):152–161. doi:10.1016/j.envres.2009.12.002

    Article  CAS  Google Scholar 

  • Tian L, Qiu H, Sun S, Lin H (2016) Emergency cardiovascular hospitalization risk attributable to cold temperatures in Hong Kong. Circ Cardiovasc Qual Outcomes 9(2):135–142. doi:10.1161/CIRCOUTCOMES.115.002410

    Article  Google Scholar 

  • Vencloviene J, Babarskiene R, Dobozinskas P, Siurkaite V (2015) Effects of weather conditions on emergency ambulance calls for acute coronary syndromes. Int J Biometeorol 59(8):1083–1093. doi:10.1007/s00484-014-0921-6

    Article  Google Scholar 

  • Wang XL, Yang L, Chan KH, Chan KP, Cao PH, Lau EH, Peiris JS, Wong CM (2015) Age and sex differences in rates of influenza-associated hospitalizations in Hong Kong. Am J Epidemiol 182(4):335–344. doi:10.1093/aje/kwv068

    Article  Google Scholar 

  • Wang XY, Barnett AG, Hu W, Tong S (2009) Temperature variation and emergency hospital admissions for stroke in Brisbane, Australia, 1996-2005. Int J Biometeorol 53(6):535–541. doi:10.1007/s00484-009-0241-4

    Article  Google Scholar 

  • Wang YC, Lin YK (2014) Association between temperature and emergency room visits for cardiorespiratory diseases, metabolic syndrome-related diseases, and accidents in metropolitan Taipei. PLoS One 9(6):e99599. doi:10.1371/journal.pone.0099599

    Article  Google Scholar 

  • Wang YC, Lin YK, Chuang CY, Li MH, Chou CH, Liao CH, Sung FC (2012) Associating emergency room visits with first and prolonged extreme temperature event in Taiwan: a population-based cohort study. Sci Total Environ 416:97–104. doi:10.1016/j.scitotenv.2011.11.073

    Article  CAS  Google Scholar 

  • Wichmann J, Andersen Z, Ketzel M, Ellermann T, Loft S (2011) Apparent temperature and cause-specific emergency hospital admissions in Greater Copenhagen, Denmark. PLoS One 6(7):e22904. doi:10.1371/journal.pone.0022904

    Article  CAS  Google Scholar 

  • Ye X, Wolff R, Yu W, Vaneckova P, Pan X, Tong S (2012) Ambient temperature and morbidity: a review of epidemiological evidence. Environ Health Perspect 120(1):19–28. doi:10.1289/ehp.1003198

    Article  Google Scholar 

  • Zhang X, Zhang S, Wang C, Wang B, Guo P (2014) Effects of moderate strength cold air exposure on blood pressure and biochemical indicators among cardiovascular and cerebrovascular patients. Int J Environ Res Public Health 11(3):2472–2487. doi:10.3390/ijerph110302472

    Article  Google Scholar 

Download references

Acknowledgements

We thank Takuya Ishizaka and Manabu Hasegawa for their assistance in helping us acquire data from the Fire and Disaster Management Agency of the Ministry of Internal Affairs and Communications, Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daisuke Onozuka or Akihito Hagihara.

Ethics declarations

Financial disclosure

This work was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Numbers 15K08714 and 16H05247. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author contributions

DO made substantial contributions to conception and design, analyzed data, and wrote the manuscript. AH was involved in drafting the manuscript and critically revising it for important intellectual content.

Competing interests

The authors have declared that no competing interests exist.

Ethics approval

The study was approved by the ethics committee at Kyushu University Graduate School of Medical Sciences. This was an observational study using national registry data. The requirement for written informed consent was waived. Patient records and other patient information remained anonymous and de-identified prior to analysis. All methods were carried out in accordance with approved guidelines and regulations.

Electronic supplementary materials

ESM 1

(PDF 4.88 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onozuka, D., Hagihara, A. Spatiotemporal variations of extreme low temperature for emergency transport: a nationwide observational study. Int J Biometeorol 61, 1081–1094 (2017). https://doi.org/10.1007/s00484-016-1288-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-016-1288-7

Keywords

Navigation