Skip to main content

Advertisement

Log in

Can we detect a nonlinear response to temperature in European plant phenology?

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Over a large temperature range, the statistical association between spring phenology and temperature is often regarded and treated as a linear function. There are suggestions that a sigmoidal relationship with definite upper and lower limits to leaf unfolding and flowering onset dates might be more realistic. We utilised European plant phenological records provided by the European phenology database PEP725 and gridded monthly mean temperature data for 1951–2012 calculated from the ENSEMBLES data set E-OBS (version 7.0). We analysed 568,456 observations of ten spring flowering or leafing phenophases derived from 3657 stations in 22 European countries in order to detect possible nonlinear responses to temperature. Linear response rates averaged for all stations ranged between −7.7 (flowering of hazel) and −2.7 days °C−1 (leaf unfolding of beech and oak). A lower sensitivity at the cooler end of the temperature range was detected for most phenophases. However, a similar lower sensitivity at the warmer end was not that evident. For only ∼14 % of the station time series (where a comparison between linear and nonlinear model was possible), nonlinear models described the relationship significantly better than linear models. Although in most cases simple linear models might be still sufficient to predict future changes, this linear relationship between phenology and temperature might not be appropriate when incorporating phenological data of very cold (and possibly very warm) environments. For these cases, extrapolations on the basis of linear models would introduce uncertainty in expected ecosystem changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barnosky AS, Matzke N, Tomiya S, Wogan GOU, Swartz B, Quental TB, Marshall C, McGuire JL, Lindsey EL, Maguire KC, Mersey B, Ferrer EA (2011) Has the Earth’s sixth mass extinction already arrived? Nature 471(7336):51–57

    Article  CAS  Google Scholar 

  • Bennie J, Kubin E, Wiltshire A, Huntley B, Baxter R (2010) Predicting spatial and temporal patterns of bud-burst and spring frost risk in north-west Europe: the implications of local adaption to climate. Glob Chang Biol 16:1503–1514

    Article  Google Scholar 

  • Caffarra A, Donnelly A, Chuine I (2011a) Modelling the timing of Betula pubescens budburst. II. Integrating complex effects of photoperiod into process-based models. Clim Res 46:159–170

    Article  Google Scholar 

  • Caffarra A, Donnelly A, Chuine I, Jones MB (2011b) Modelling the timing of Betula pubescens budburst. I. Temperature and photoperiod: a conceptual model. Clim Res 46:147–157

    Article  Google Scholar 

  • Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333(6045):1024–1026

    Article  CAS  Google Scholar 

  • Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22:357–365

    Article  Google Scholar 

  • Cook BI, Wolkovich EM, Parmesan C (2012) Divergent responses to spring and winter warming drive community level flowering trends. PNAS 109:9000–9005

    Article  CAS  Google Scholar 

  • Dantec CF, Vitasse Y, Bonhomme M, Louvet J-M, Kremer A, Delzon S (2014) Chilling and heat requirements for leaf unfolding in European beech and sessile oak populations at the southern limit of their distribution range. Int J Biometeorol 58(9):1853–1864

    Article  Google Scholar 

  • de Réaumur RAF (1735) Observations du thermomètre, faites à Paris pendant l’annee 1735, comparées avec celles qui ont été faites sous la ligne, á l’isle de France, á Alger et quelques unes des nos isles de l’Amérique. Mem Acad des Sci, Paris: 545

  • Defila C, Clot B (2001) Phytophenological trends in Switzerland. Int J Biometeorol 45:203–207

    Article  CAS  Google Scholar 

  • Delbart N, Le Toan T, Kergoat L, Fedotova V (2006) Remote sensing of spring phenology in boreal regions: a free of snow-effect method using NOAA-AVHRR and SPOT-VGT data (1982–2004). Remote Sens Environ 101(1):52–62

    Article  Google Scholar 

  • Dose V, Menzel A (2006) Bayesian correlation between temperature and blossom onset data. Glob Chang Biol 12(9):1451–1459

    Article  Google Scholar 

  • Ellwood ER, Temple SA, Primack RB, Bradley NL, Davis CC (2013) Record-breaking early flowering in the Eastern United States. PLoS One 8(1):e53788. doi:10.1371/journal.pone.0053788

    Article  CAS  Google Scholar 

  • Estrella N, Sparks TH, Menzel A (2007) Trends and temperature response in the phenology of crops in Germany. Glob Change Biol 13:1737–1747

    Article  Google Scholar 

  • European Environment Agency (EEA) (2010) CORINE Land Cover (CLC) 2006 raster data 100 × 100 m—version 13 (02/2010). Available at http://www.eea.europa.eu/data-and-maps/data/corineland-cover-2006-raster

  • Fu YH, Zhao H, Piao S, Peaucelle M, Peng S, Zhou G, Ciais P, Huang M, Menzel A, Peñuelas J, Song Y, Vitasse Y, Zeng Z, Janssens IA (2015) Declining global warming effects on the phenology of spring leaf unfolding. Nature 526:104–107

    Article  CAS  Google Scholar 

  • Gazal R, White MA, Gillies R, Rodemaker E, Sparrow E, Gordon L (2008) GLOBE students, teachers, and scientists demonstrate variable differences between urban and rural leaf phenology. Glob Chang Biol 14:1568–1580

    Article  Google Scholar 

  • Hänninen H, Kellomäki S, Laitinen K, Pajari B, Repo T (1993) Effect of increased winter temperature on the onset of height growth of Scots pine: a field test of a phenological model. Silva Fennica 27:251–257

    Article  Google Scholar 

  • Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded dataset of surface temperature and precipitation. J Geophys Res Atmos 113:D20119. doi:10.1029/2008JD10201

    Article  Google Scholar 

  • Heide OM (2003) High autumn temperature delays spring bud burst in boreal trees, counterbalancing the effect of climatic warming. Tree Physiol 23:931–936

    Article  CAS  Google Scholar 

  • Hill JK, Thomas CD, Blakeley DS (1999) Evolution of flight morphology in a butterfly that has recently expanded its geographic range. Oecologia 121(2):165–170

    Article  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • IPCC (2013) Summary for policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Eds. Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, Cambridge University Press

  • Jochner S, Sparks TH, Estrella N, Menzel A (2012) The influence of altitude and urbanisation on trends and mean dates in phenology (1980-2009). Int J Biometeorol 56:387–394

    Article  Google Scholar 

  • Körner C (2004) Mountain biodiversity, its causes and functions. Ambio Special Report 13:11–17

    Google Scholar 

  • Körner C, Basler D (2010) Phenology under global warming. Science 327:1461–1462

    Article  Google Scholar 

  • Landsberg HE (1981) The urban climate. Academic Press

  • Lapenis A, Henry H, Vuille M, Mower J (2014) Climatic factors controlling plant sensitivity to warming. Clim Change 122:723–734

    Article  Google Scholar 

  • Laube J, Sparks TH, Estrella N, Höfler J, Ankerst DP, Menzel A (2014) Chilling outweighs photoperiod in preventing precocious spring development. Glob Change Biol 20(1):170–182

    Article  Google Scholar 

  • Lenoir J, Svenning J-C (2014) Climate-related range shifts—a global multidimensional synthesis and new research directions. Ecography. doi:10.1111/ecog.00967

    Google Scholar 

  • Lu P, Yu Q, Liu J, Lee X (2006) Advance of tree-flowering dates in response to urban climate change. Agri For Meteorol 138:120–131

    Article  Google Scholar 

  • Luo Z, Sun OJ, Ge Q, Xu W, Zheng J (2007) Phenological responses of plants to climate change in an urban environment. Ecol Res 22:507–514

    Article  Google Scholar 

  • Luyssaert S, Ciais P, Piao SL, Schulze E-D, Jung M, Zaehle S, Schelhaas MJ, Reichstein M, et al. (2010) The European carbon balance. Part 3: forests. Glob Change Biol 16(5):1429–1450

    Article  Google Scholar 

  • Meier U (Ed.) (2001) Entwicklungsstadien mono- und dikotyler Pflanzen. BBCH-Monograph. Biologische Bundesanstalt für Land und Forstwirtschaft

  • Menzel A, Estrella N, Testka A (2005) Temperature response rates from long-term phenological records. Clim Res 30:21–28

    Article  Google Scholar 

  • Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissoli P, et al. (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976

    Article  Google Scholar 

  • Morin X, Lechowicz MJ, Augspurger C, O’ Keefe J, Viner D, Chuine I (2009) Leaf phenology in 22 North American tree species during the 21st century. Glob Change Biol 15:961–975

    Article  Google Scholar 

  • Morin X, Roy J, Sonié L, Chuine I (2010) Changes in leaf phenology of three European oak species in response to experimental climate change. New Phytol 186:900–910

    Article  Google Scholar 

  • Murray MB, Cannell MGR, Smith RI (1989) Date of budburst of fifteen tree species in Britain following climatic warming. J Appl Ecol 26(2):693–700

    Article  Google Scholar 

  • Newnham RM, Sparks TH, Skjøth CA, Head K, Adams-Groom B, Smith M (2013) Pollen season and climate: Is the timing of birch pollen release in the UK approaching its limit? Int J Biometeorol 57:391–400

    Article  CAS  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  Google Scholar 

  • Partanen J, Koski V, Hänninen H (1998) Effects of photoperiod and temperature on the timing of bud burst in Norway spruce (Picea abies). Tree Physiol 18:811–816

    Article  Google Scholar 

  • Polgar C, Gallinat A, Primack RB (2014) Drivers of leaf-out phenology and their implications for species invasions: insights from Thoreau’s concord. New Phytol 202(1):106–115

    Article  Google Scholar 

  • Pope KS, Dose V, Da Silva D, Brown PH, Leslie CA, Dejong TM (2013) Detecting nonlinear response of spring phenology to climate change by Bayesian analysis. Glob Chang Biol 19(5):1518–1555

    Article  Google Scholar 

  • Primack RB, Ibáñez I, Higuchi H, Lee SD, Miller-Rushing AJ, Wilson AM, Silander JA (2009) Spatial and interspecific variability in phenological responses to warming temperatures. Biol Conserv 142:2569–2577

    Article  Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds AJ (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Article  CAS  Google Scholar 

  • Rosenzweig C, Karoly D, Vicarelli M, Neofotis P, Wu Q, Casassa G, Menzel A, Root TL, Estrella N, Seguin B, Tryjanowski P, Liu C, Rawlins S, Imeson A (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453:353–357

    Article  CAS  Google Scholar 

  • Schwartz MD (1997) Spring index models: an approach to connecting satellite and surface phenology. In: Phenology of Seasonal Climates. Eds. Lieth H, Schwartz MD. Backhuys: 23–38

  • Shen M (2011) Spring phenology was not consistently related to winter warming on the Tibetan Plateau. PNAS 108(19):E91–E92

    Article  CAS  Google Scholar 

  • Sparks TH, Jeffree EP, Jeffree CE (2000) An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK. Int J Biometeorol 44:82–87

    Article  CAS  Google Scholar 

  • Sparks TH, Menzel A, Peñuelas J, Tryjanowski P (2011) Species response to contemporary climate change. Millington AC, Blumler M, Schickhoff U (eds.), The SAGE handbook of biogeography. SAGE, pp. 231–242

  • Tryjanowski P, Panek M, Sparks T (2006) Phenological response of plants to temperature varies at the same latitude: case study of dog violet and horse chestnut in England and Poland. Clim Res 32:89–93

    Article  Google Scholar 

  • Vitasse Y, Delzon S, Bresson CC, Michalet R, Kremer A (2009) Altitudinal differentiation in growth and phenology among populations of temperate-zone tree species growing in a common garden. Can J For Res 39:1259–1269

    Article  Google Scholar 

  • Vitasse Y, Hoch G, Randin CF, Lenz A, Kollas C, Scheepens JF, Körner C (2013) Elevational adaptations and plasticity in seedling phenology of temperate deciduous tree species. Oecologia 171:663–678

    Article  Google Scholar 

  • Walther G-R (2000) Climatic forcing on the dispersal of exotic species. Phytocoenologia 30(3–4):409–430

    Google Scholar 

  • Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Frometin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  Google Scholar 

  • Wang SP, Meng FD, Duan JC, Wang YF, Cui XY, Piao L, Niu HS, Xu GP, et al. (2014) Asymmetric sensitivity of first flowering date to warming and cooling in alpine plants. Ecology 95(12):3387–3398

    Article  Google Scholar 

  • Wolkovich EM, Cook BI, Allen JM, Crimmins TM, Betancourt JL, Travers SE, Pau S, Regetz J, et al. (2012) Warming experiments underpredict plant phenological responses to climate change. Nature 485:494–497

    CAS  Google Scholar 

  • Yu H, Luedeling E, Xu J (2010) Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. PNAS 107:22151–22156

    Article  CAS  Google Scholar 

  • Zhang XY, Tarpley D, Sullivan JT (2007) Diverse responses of vegetation phenology to a warming climate. Geophys Res Lett 34:1–5

    Google Scholar 

  • Ziello C, Sparks TH, Estrella N, Belmonte J, Bergmann KC, Bucher E, Brighetti MA, Damialis A, et al. (2012) Changes to airborne pollen counts across Europe. PLoS One 7:e34076

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the PEP725 for their phenological data and the many thousands of people whose observations are summarised there. We acknowledge the E-OBS data set from the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu). The authors gratefully acknowledge the support by the Technische Universität München–Institute for Advanced Study (IAS), funded by the German Excellence Initiative. The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 282250.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Jochner.

Electronic supplementary material

ESM 1

(DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jochner, S., Sparks, T.H., Laube, J. et al. Can we detect a nonlinear response to temperature in European plant phenology?. Int J Biometeorol 60, 1551–1561 (2016). https://doi.org/10.1007/s00484-016-1146-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-016-1146-7

Keywords

Navigation