Skip to main content

Advertisement

Log in

Comparison of different approaches of radiation use efficiency of biomass formation estimation in Mountain Norway spruce

Trees Aims and scope Submit manuscript

Abstract

Key message

Radiation use efficiency values estimation based on the biomass increment (one approach) and on NPP from eddy covariance (two approaches) estimation of NPP brings the values of 0.13, 0.40, and 0.47 g (C) MJ −1 , respectively.

Abstract

The productivity of terrestrial ecosystems is primarily reliant on the absorption of solar radiation energy and its conversion into biomass. Monteith (1977) first introduced the concept of radiation use efficiency (RUE), which expresses the effectiveness of a plant stand to use solar radiation for the formation of new biomass and to maintain existing biomass. The presented paper uses a long-term, decadal, time series of biomass data, which is based on forest inventory data and an allometric relation, and on the application of eddy covariance (EC) estimation of Net Primary Production (NPP). These approaches provide different values of light use efficiency (LUE). LUE is based on direct carbon exchange estimation, LUE i , which denotes instantaneous efficiency based on the relationship between the daily sum of incident global radiation (GR i ) and NPP and LUES, calculated as the ratio between the sum of NPP and the sum of GR i per growing season. RUE is based on direct yearly biomass increment expressed in carbon units (carbon = 0.5 × biomass) divided by the sum of GR i per year. The obtained values amount to 0.13, 0.40, and 0.47 g(C) MJ−1 for RUE, LUES, and LUE i , respectively. The higher value of LUE i reflects a direct relation with the efficiency of photosynthetic carbon pumping. In contrast, the RUE value, based on biomass inventories, is the result of woody mass formation that is caused by several mutually related physiological processes and “wastages” of radiation utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Amthor JS (2010) From sunlight to phytomass: on the potential efficiency of converting solar radiation to phyto-energy. New Phytol 188:939–959

    Article  CAS  PubMed  Google Scholar 

  • Arkebauer TJ, Weiss A, Sinclair TR, Blum A (1994) In defense of radiation use efficiency: a response to Demetriades-Shah et al. (1992). Agric For Meteorol 68:221–227

    Article  Google Scholar 

  • Aubinet M, Grelle A, Ibrom A, Rannik Ü, Moncrieff J, Foken T, Kowalski AS, Martin PH, Berbigier P, Bernhofer Ch, Clement R, Elbers J, Granier A, Grünwald T, Morgenstern K, Pilegaard K, Rebmann C, Snijders W, Valentini R, Vesala T (2000) Estimates of the Antal net carbon and water exchange of European forests: the EUROFLUX methodology. Adv Ecol Res 30:113–175

    Article  CAS  Google Scholar 

  • Baldocchi D, Hicks B, Meyers T (1988) Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology 69:1331–1340

    Article  Google Scholar 

  • Cai T, Black A, Jassal RS, Morgenstern K, Nesic Z (2009) Incorporating diffuse photosynthetically active radiation in a single-leaf model of canopy photosynthesis for a 56-year-old Douglas-fir forest. Int J Biometeorol 53:135–148

    Article  PubMed  Google Scholar 

  • Cannell MGR, Milne R, Sheppard LJ, Unsworth MH (1987) Radiation interception and productivity of willow. J Appl Ecol 24:261–278

    Article  Google Scholar 

  • Chapin FS III, Woodwell GM, Randerson JT, Rastetter EB, Lovett GM, Baldocchi DD, Clark DA, Harmon ME, Schimel DS, Valentini R, Wirth C, Aber JD, Cole JJ, Goulden ML, Harden JW, Heimann M, Howarth RW, Matson PA, McGuire AD, Melillo JM, Mooney HA, Neff JC, Houghton RA, Pace ML, Ryan MG, Running SW, Sala OE, Schlesinger WH, Schulze ED (2006) Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9:1041–1050

    Article  CAS  Google Scholar 

  • Coombs J, Hall DO, Long SP, Scurlock JMO (1985) Techniques in Bioproductivity and Photosynthesis. Pergamon Press, Oxford

    Google Scholar 

  • DeLucia EH, George K, Hamilton JG (2002) Radiation-use efficiency of a forest exposed to elevated concentrations of atmospheric carbon dioxide. Tree Physiol 22:1003–1010

    Article  CAS  PubMed  Google Scholar 

  • Dungan RJ, Whitehead D (2006) Modelling environmental limits to light use efficiency for a canopy of two broad-leaved tree species with contrasting leaf habit. NZJ Ecol 30:251–259

    Google Scholar 

  • Formánek P, Rejšek K, Vránová V, Klejdus B (2008) Selected diamino acids in soils of differently managed mountain meadow and forest ecosystems: assessment of their role in the ecosystem nutrition. In: Schäfer HA, Wohlbier LM (eds) Diamino Amino Acids, 2nd edn. Nova Science Publishers, New York, pp 182–218

    Google Scholar 

  • Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat 19:1–67

    Article  Google Scholar 

  • Geider RJ, Delucia EH, Falkowski PG, Finzi AC, Grime JP, Grace J, Kana TM, La Roche J, Long SP, Osborne BA, Platt T, Prentice IC, Raven JA, Schlesinger WH, Smetacek V, Stuart V, Sathyendranath S, Thomas RB, Vogelmann TC, Williams P, Woodward FI (2001) Primary productivity of planet earth: biological determinants and physical constraints in terrestrial and aquatic habitats. Glob Chang Biol 7:849–882

    Article  Google Scholar 

  • Gough CM, Vogel CS, Schmid HP, Su HB, Curtis PS (2008) Multi-year convergence of biometric and meteorological estimates of forest carbon storage. Agric For Meteorol 148:158–170

    Article  Google Scholar 

  • Grace JC, Jarvis PG, Norman JM (1987) Modelling the interception of solar energy in intensively managed stands. NZJ For Sci 17:193–209

    Google Scholar 

  • Granier A, Bréda N, Longdoz B, Gross P, Ngao J (2008) Ten years of fluxes and stand growth in a young beech forest at Hesse, North-eastern France. Ann For Sci 65:704

    Article  Google Scholar 

  • Green CF (1987) Nitrogen nutrition and wheat growth in relation to absorbed solar radiation. Agric For Meteorol 41:207–248

    Article  Google Scholar 

  • Hember RA, Coops NC, Black TA, Guy RD (2010) Simulating gross primary production across a chronosequence of coastal Douglas-fir forest stands with a production efficiency model. Agric For Meteorol 150:238–253

    Article  Google Scholar 

  • Hilker T, Coops NC, Wulder MA, Black TA, Guy RD (2008) The use of remote sensing in light use efficiency based models of gross primary production: A review of current status and future requirements. Sci Total Environ 404:411–423

    Article  CAS  PubMed  Google Scholar 

  • Högberg P, Löfvenius MO, Nordgren A (2009) Partitioning of soil respiration into its autotrophic and heterotrophic components by means of tree-girdling in old boreal spruce forest. For Ecol Manag 257:1764–1767

    Article  Google Scholar 

  • Jarvis PG, Leverenz JW (1983) Productivity of temperate, deciduous and evergreen forests. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological Plant Ecology IV. Encyclopedia of Plant Physiology, New series, vol. 2D. Springer, New York, pp 233–280

    Chapter  Google Scholar 

  • Jenkins PJ, Richardson AD, Braswell BH, Ollinger SV, Hollinger DY, Smith ML (2007) Refining light-sue efficiency calculations for a deciduous forest canopy using simultaneous tower-based carbon flux and radiometric measurements. Agric For Meteorol 143:64–79

    Article  Google Scholar 

  • Jolly WM, Dobbertin M, Zimmermann NE, Reichstein M (2005) Divergent vegetation growth responses to the 2003 heat wave in the Swiss Alps. Geophys Res Lett 32:18. doi:10.1029/2005GL023252

    Article  Google Scholar 

  • Kho RM (2000) On crop production and the balance of available resources. Agric Ecosyst Environ 80:71–85

    Article  Google Scholar 

  • Kratochvílová I, Janouš D, Marek MV, Barták M, Říha L (1989) Production activity of mountain cultivated Norway spruce stands under the impact of air pollution. 1. General description of problems. Ekol CSFR 8:407–419

    Google Scholar 

  • Krejza J, Pokorný R, Marková I (2013) Is allometry for aboveground organ’s mass estimation in young Norway spruce stands affected by different type of thinning? Acta Univ Agric et Silviculturae Mendelianae Brunensis 61:1755–1761

    Article  Google Scholar 

  • Lagergren F, Eklund L, Grelle A, Lundblad M, Mölder M, Llankreujer H, Lindhort A (2005) Net primary production and light use efficiency in a mixed coniferous forest in Sweden. Plant Cell Environ 28:412–423

    Article  Google Scholar 

  • Landsberg JJ, Sands P (2010) Physiological ecology of forest production: principles, processes and models. Academic Press, New York

    Google Scholar 

  • Li L, Lu S, Chiang V (2006) A genomic and molecular view of wood formation. Crit Rev Plant Sci 25:215–233

    Article  CAS  Google Scholar 

  • Linder S (1985) Potential and actual production in Australian forest stands. In: Landsberg JJ, Parson W (eds) Research for forest management. CSIRO, Melbourne, pp 11–35

    Google Scholar 

  • Litton CM, Raich JW, Ryan MG (2007) Carbon allocation in forest ecosystems. Glob Chang Biol 13:2089–2109

    Article  Google Scholar 

  • Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8:315–323

    Article  Google Scholar 

  • Luyssaert S, Inglima I, Jung M, Richardson AD, Reichstein M, Pappale D, PIiao SL, Schulze ED, Wingate L, Matteuci G, Aragao L, Aubinet M, Beer C, Bernhofer C, Black KG, Bonal D, Bonnefond JM, Chambers J, Ciais P, Cook B, Davis KJ, Dolman AJ, Gielen B, Goulden M, Grace J, Granier A, Grelle A, Griffis T, Grünwald T, Guidolotti G, Hanson PJ, Harding R, Hollinger DY, Hutyra IR, Kolari P, Kruijt B, Kutsch W, Lagergren F, Laurila T, Law BE, le Maire G, Lindroth A, Loustau D, Malhi Y, Mateus J, Migliavacca J, Misson I, Montagnani I, Moncrieff J, Moors E, Munger JW, Nnikinmaa E, Ollinger SV, Pita G, Rebmann C, Roupsard O, Saigusa N, Sanz MJ, Ssierra C, Smith ML, Tang J, Valentini R, Vesala T, Janssens IA (2007) CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob Chang Biol 13:2509–2537

    Article  Google Scholar 

  • Malcolm GM, Lopéz-Gutierrez JC, Koide RT (2009) Temperature sensitivity of respiration differs among forest floor layers in a Pinus resinosa plantation. Soil Biol Biochem 41:1075–1079

    Article  CAS  Google Scholar 

  • Marek MV, Pirochtová M, Marková I (1992) Production activity of mountain cultivated Norway spruce stands under the impact of air pollution. 2. Vertical distribution of photosynthetic activity in the stand canopy. Ekol CSFR 11:121–132

    CAS  Google Scholar 

  • Marek MV, Marková I, Kalina J, Janouš D (1997) Effect of thinning on parameters of photosynthesis characteristics of Norway spruce canopy 1: Light penetration and photosynthesis. Lesnictvi (Prague) 43:141–153

    Google Scholar 

  • Marek MV, Šprtová M, Špunda V, Kalina J (1999) Response of sun versus shade foliage photosynthesis to radiation in Norway spruce. Phyton 39:131–138

    CAS  Google Scholar 

  • Marková I, Rožnovský J, Janous D (2003) Evaluation and reconstruction of global radiation at Bílý Kříž (The Czech Republic). Ekol Bratislava 22:85–97

    Google Scholar 

  • McMurtrie RE (1991) Relationship of forest productivity to nutrient and carbon supply-a modeling analysis. Tree Physiol 9:87–99

    Article  PubMed  Google Scholar 

  • McMurtrie RE, Wang YP (1993) Mathematical models of the photosynthetic response of tree stands to rising CO2 concentrations and temperatures. Plant Cell Environ 16:1–13

    Article  CAS  Google Scholar 

  • Medlyn BE (1998) Physiological basis of the light use efficiency model. Tree Physiol 18:167–176

    Article  PubMed  Google Scholar 

  • Monson RK, Lipson DL, Burns SP, Turnipseed AA, Delany AC, Williams MW, Schmidt SK (2006) Winter forest soil respiration controlled by climate and microbial community composition. Nature 439:711–714

    Article  CAS  PubMed  Google Scholar 

  • Monteith JL (1972) Solar radiation and productivity in tropical ecosystems. J Appl Ecol 9:747–766

    Article  Google Scholar 

  • Monteith JL (1977) Climate and efficiency of crop production in Britain. Philos Trans R Soc Lond 281:277–294

    Article  Google Scholar 

  • Monteith JL (1994) Discussion validity of the correlation between intercepted radiation and biomass. Agric For Meteorol 68:213–220

    Article  Google Scholar 

  • Pendall E, Heisler-White JL et al (2013) Warming reduces carbon losses from grassland exposed to elevated atmospheric carbon dioxide. PLoS One 8:e71921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pokorný R, Marek MV (2000) Test of accuracy of LAI estimation by LAI-2000 under artificially changed leaf to wood area proportions. Biol Plant 43:517–544

    Article  Google Scholar 

  • Pokorný R, Tomášková I (2007) Allometric relationships for surface area and dry mass of Norway spruce aboveground organs. J For Sci 53:548–554

    Google Scholar 

  • Pokorný R, Tomášková I, Havránková K (2008) Temporal variation and efficiency of leaf area index in young mountain Norway spruce stand. Eur J For Res 127:359–367

    Article  Google Scholar 

  • Reichstein M, Falge E, Baldocchi D et al (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Chang Biol 11:1424–1439

    Article  Google Scholar 

  • Roupsard O, Le Maire G, Nouvellon Y, Dauzat J, Jourdan C, Navarro M, Rouzière A (2009) Scaling-up productivity (NPP) using light or water use efficiencies (LUE, WUE) from a two-layer tropical plantation. Agrofor Syst 76:409–422

    Article  Google Scholar 

  • Rowland L, Malhi Y, Silva-Espejo J, Farfán-Amézquita F, Halladay K, Doughty CE, Phillips OL (2014) The sensitivity of wood production to seasonal and interannual variations in climate in a lowland amazonian rainforest. Oecologia 174:295–306

    Article  PubMed  Google Scholar 

  • Ruimy A, Dedieu G et al (1996) TURC: A diagnostic model of continental gross primary productivity and net primary productivity. Glob Biogeochem Cycles 10:269–285

    Article  CAS  Google Scholar 

  • Running SW, Thornton PE, Nemani R, Glassy JM (2000) Global terrestrial gross and net primary productivity from the earth observing system. In: Sala OE, Jackson RB, Mooney HA, Howarth RW (eds) Methods in ecosystem science. Springer, New York, pp 44–57

    Chapter  Google Scholar 

  • Sands PJ (1993) Modelling canopy production. III. Canopy light-utilization efficiency and its sensitivy to physiological and environmental parameters. Aust J Plant Physiol 23:103–114

    Article  Google Scholar 

  • Saura-Mas S, Estiarte M, Peñuelas J, Lloret F (2012) Effects of climate change on leaf litter decomposition across post-fire plant regenerative groups. Environ Exp Bot 77:274–282

    Article  Google Scholar 

  • Trnka M, Eitzinger J, Hlavinka P et al (2009) Climate-driven changes of production regions in Central Europe. Plant Soil Environ 55:257–266

    Google Scholar 

  • Trnka M, Brazdil R, Dubrovsky M et al (2011) A 200-year climate record in Central Europe: implications for agriculture. Agron Sustain Dev 31:631–641

    Article  Google Scholar 

  • Turner DP, Gower ST, Cohen WB et al (2002) Effects of spatial variability in light use efficiency on satellite based NPP model monitoring. Remote Sens 80:397–405

    Google Scholar 

  • Turner DP, Urbanski S, Bremer D, Wofsy SC, Meyer T, Gower ST, Gergory M (2003) A cross-biome comparison of daily light use efficiency for gross primary production. Glob Chang Biol 9:383–395

    Article  Google Scholar 

  • Wang YP, Jarvis PG (1990) Description and validation of an array model - MAESTRO. Agric For Meteorol 51:257–280

    Article  Google Scholar 

  • Wang YP, Jarvis PG, Taylor CMA (1991) PAR absorption and its relation to above-ground dry matter production of Sitka Spruce. J Appl Ecol 28:547–560

    Article  Google Scholar 

  • Wang X, Fang J, Zhu B (2008) Forest biomass and root-shoot allocation in northeast China. For Ecol Manag 255:4007–4020

    Article  Google Scholar 

  • Waring RH (1987) Characteristics of trees predisposed to die. Bioscience 37:569–574

    Article  Google Scholar 

  • Yuan W, Liu S, Zhou G, Tieszen LL, Baldocchi D, Bernhofer C, Gholz H, Goldstein AH, Goulden ML, David Y, Hollinger DY, Hu Y, Lawn BE, Stoy PC, Vesala T, Wofsy SC (2007) Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agric For Meteorol 143:189–207

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Youth and Sports of CR within the National Sustainability Program I (NPU I), Grant Number LO1415 and within the CzeCOS program, Grant Number LM2015061. Authors thank Alice Dvorská for the initial cooperation and useful remarks. We also thank Ryan McGloin for valuable language corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lenka Krupková.

Ethics declarations

Conflict of interest

All benefits from a state or commercial party related directly or indirectly to the subject of this manuscript and to the authors are acknowledged.

Additional information

Communicated by R. Matyssek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krupková, L., Marková, I., Havránková, K. et al. Comparison of different approaches of radiation use efficiency of biomass formation estimation in Mountain Norway spruce. Trees 31, 325–337 (2017). https://doi.org/10.1007/s00468-016-1486-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-016-1486-2

Keywords

Navigation