Skip to main content
Log in

Mineral nutrition and specific leaf area of plants under contrasting long-term fire frequencies: a case study in a mesic savanna in Australia

  • Short Communication
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

The association between frequent long-term fires and soil fertility may control the nutritional status and leaf scleromorphism of Australian savanna species.

Abstract

Fire frequency is considered to be a controlling factor for the structure of savanna vegetation, also affecting functional aspects of plants, yet studies contrasting long-term burnt and unburnt sites within the same area are rare. At fire-protected sites, one may expect to find woody vegetation with non-sclerophyllous leaves exhibiting a high nutrient concentration and growing on soils of high fertility. Using a burnt (14 times within the last 20 years) and an unburnt site (over the same period) within the same area of a mesic Australian savanna, we compared the soil fertility, specific leaf area (SLA) and leaf macronutrient concentration of the exclusive (species that occur at a single site), common (species that occur at both sites) and total (exclusive and common species combined) sampled tree species from the two sites. The exclusive, common and total sampled tree species had a lower SLA when growing at the burnt site than at the unburnt site. Soil from the burnt site was less fertile than the soil from the unburnt site, and the plants from the burnt site exhibited lower leaf nutrient concentrations when compared with those from the unburnt site. The association between fire and soil fertility was consistent with the differences in leaf scleromorphism between the sites under contrasting fire frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Alvarado ST, Buisson E, Rabarison H, Rajeriarison C, Birkinshaw C, Lowry PP, Morellato LPC (2014) Fire and the reproductive phenology of endangered Madagascar sclerophyllous tapia woodlands. S Afr J Bot 94:79–87. doi:10.1016/j.sajb.2014.06.001

    Article  Google Scholar 

  • Andersen AN, Cook GD, Corbett LK, Douglas MM, Eager RW, Russell-Smith J, Setterfield SA, Williams RJ, Woinarski JCZ (2005) Fire frequency and biodiversity conservation in Australian tropical savannas: implications from the Kapalga fire experiment. Aust Ecol 30:155–167. doi:10.1111/j.1442-9993.2005.01441.x

    Article  Google Scholar 

  • Andersson M, Michelsen A, Jensen M, Kjøller A (2004) Tropical savannah woodland: effects of experimental fire on soil microorganisms and soil emissions of carbon dioxide. Soil Biol Biochem 36:849–858. doi:10.1016/j.soilbio.2004.01.015

    Article  CAS  Google Scholar 

  • Araújo GM, Haridasan M (1988) A comparison of the nutritional status of two forest communities on mesotrophic and dystrophic soils in Central Brazil. Comun Soil Sci Plant Anal 19:1075–1089. doi:10.1080/00103628809367996

    Article  Google Scholar 

  • Beringer J, Hutley LB, Abramson D et al (2015) Fire in Australian savannas: from leaf to landscape. Glob Change Biol 21:62–81. doi:10.1111/gcb.12686

    Article  Google Scholar 

  • BOM-Bureau of Meteorology, Australian Government (2013) [Cited 8 October 2013]. http://www.bom.gov.au. Accessed 9 Sept 2015

  • Bond WJ, Woodward FI, Midgley GF (2005) The global distribution of ecosystems in a world without fire. New Phytol 165:525–537. doi:10.1111/j.1469-8137.2004.01252.x

    Article  CAS  PubMed  Google Scholar 

  • Bond WJ, Cook GD, Williams RJ (2012) Which trees dominate in savannas? The escape hypothesis and eucalypts in northern Australia. Aust Ecol 37:678–685. doi:10.1111/j.1442-9993.2011.02343.x

    Article  Google Scholar 

  • Burrows GE (2013) Buds, bushfire and resprouting in eucalypts. Aust J Bot 61:331–349. doi:10.1071/BT13072

    Article  Google Scholar 

  • Chuvieco E, Giglio L, Justice C (2008) Global characterization of fire activity: toward defining fire regimes from Earth observation data. Glob Change Biol 14:1488–1502. doi:10.1111/j.1365-2486.2008.01585.x

    Article  Google Scholar 

  • Cook GD (1994) The fate of nutrients during fires in a tropical savanna. Aust J Ecol 19:359–365. doi:10.1111/j.1442-9993.1994.tb00501.x

    Article  Google Scholar 

  • Cook GD (2001) Effects of frequent fires and grazing on stable nitrogen isotopes ratios of vegetation in northern Australia. Aust Ecol 26:630–636. doi:10.1046/j.1442-9993.2001.01150.x

    Article  Google Scholar 

  • Cook GD, Williams RJ, Hutley LB, O’Grady AP, Liedloff AC (2002) Variation in vegetative water use in the savannas of the North Australian Tropical Transect. J Veg Sci 13:413–418. doi:10.1111/j.1654-1103.2002.tb02065.x

    Article  Google Scholar 

  • Delgado MN, Gomes MRA, Báo SN, Rossatto DR (2013) Fertilization residues alter leaf scleromorphy in an evergreen savannah shrub (Maprounea brasiliensis, Euphorbiaceae). Aust J Bot 61:266–273. doi:10.1071/BT12231

    Article  CAS  Google Scholar 

  • Durigan G, Ratter JA (2006) Successional changes in cerrado and cerrado/forest ecotonal vegetation in western São Paulo state, Brazil, 1962-2000. Edinb J Bot 63:119–130. doi:10.1017/S0960428606000357

    Article  Google Scholar 

  • Edwards A, Hauser P, Anderson M, McCartney J, Armstrong M, Thackway R, Allan G, Hempel C, Russell-Smith J (2001) A tale of two parks: contemporary fire regimes of Litchfield and Nitmiluk National Parks, monsoonal northern Australia. Int J Wildl Fire 10:79–89. doi:10.1071/WF01002

    Article  Google Scholar 

  • Franco AC, Bustamante M, Caldas LS, Goldstein G, Meinzer FC, Kozovitz AR, Rundel P, Coradin VTR (2005) Leaf functional traits of Neotropical savanna trees in relation to seasonal water deficit. Trees 19:326–335. doi:10.1007/s00468-004-0394-z

    Article  Google Scholar 

  • Givnish TJ (1988) Adaptation to sun and shade: a whole plant perspective. Aust J Plant Physiol 15:63–92. doi:10.1071/PP9880063

    Article  Google Scholar 

  • Habermann G, Bressan ACG (2011) Root, shoot and leaf traits of the congeneric Styrax species may explain their distribution patterns in the cerrado sensu lato areas in Brazil. Funct Plant Biol 38:209–218. doi:10.1071/FP10182

    Article  Google Scholar 

  • Hao WM, Liu M-H, Crutzen PJ (1990) Estimates of annual and regional releases of CO2, and other trace gases to the atmosphere from fires in the tropics, based on FAO statistics for the period 1975–1980. In: Goldammer JG (ed) Fire in the tropical biota, ecological studies 84. Springer-Verlag, New York, pp 440–462

    Chapter  Google Scholar 

  • Hoffmann WA (1998) Post-burn reproduction of woody plants in a neotropical savanna: the relative importance of sexual and vegetative reproduction. J Appl Ecol 35:422–433. doi:10.1046/j.1365-2664.1998.00321.x

    Article  Google Scholar 

  • Hoffmann W, Geiger EL, Gotsch SG, Rossatto DR, Silva LCR, Lau OL, Haridasan M, Franco AC (2012) Ecological thresholds at the savanna-forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes. Ecol Lett 15:759–768. doi:10.1111/j.1461-0248.2012.01789.x

    Article  PubMed  Google Scholar 

  • KBMPA–Kakadu Board of Management and Parks Australia (1999) Kakadu national park plan of management. Kakadu board of management and parks Australia, Jabiru

    Google Scholar 

  • Lehmann CER, Archibald S, Hoffmann WA, Bond WJ (2011) Deciphering the distribution of the savanna biome. New Phytol 19:197–209. doi:10.1111/j.1469-8137.2011.03689.x

    Article  Google Scholar 

  • Lehmann CER, Anderson M, Sankaran M et al (2014) Savanna vegetation-fire-climate relationships differ among continents. Science 343:548–552. doi:10.1126/science.1247355

    Article  CAS  PubMed  Google Scholar 

  • Mills AJ, Fey MV (2004) Frequent fires intensity soil crusting: physiochemical feedback in the pedoderm of long-term burn experiments in South Africa. Geoderma 121:45–64. doi:10.1016/j.geoderma.2003.10.004

    Article  CAS  Google Scholar 

  • Murphy BP, Liedloff AC, Cook GD (2015) Does fire limit tree biomass in Australian savannas? Int J Wildland Fire 24:1–13. doi:10.1071/WF14092

    Article  Google Scholar 

  • Oesterheld M, Loreti J, Semmartin M, Paruelo JM (1999) Grazing, fire, and climate effects on primary productivity of grasslands and savannas. In: Walker LR (ed) Ecosystems of disturbed ground. Elsevier, Amsterdam, pp 287–306

    Google Scholar 

  • Pausas JG, Bradstock RA, Keith DA, Keeley JE (2004) Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85:1085–1100. doi:10.1890/02-4094

    Article  Google Scholar 

  • Pinheiro MHO, Monteiro R (2010) Contributions to the discussions on the origin of the cerrado biome: Brazilian savanna. Braz J Biol 70:95–102. doi:10.1590/S1519-69842010000100013

    Article  CAS  PubMed  Google Scholar 

  • Prior LD, Eamus D, Bowman DMJS (2003) Leaf attributes in the seasonally dry tropics: a comparison of four habitats in northern Australia. Funct Ecol 17:504–515. doi:10.1046/j.1365-2435.2003.00761.x

    Article  Google Scholar 

  • Prior LD, Bowman DMJS, Eamus D (2005) Intra-specific variation in leaf attributes of four savanna tree species across a rainfall gradient in tropical Australia. Aust J Bot 53:323–335. doi:10.1071/BT04080

    Article  Google Scholar 

  • Ratnam J, Sankaran M, Hanan NP, Grant RC, Zambatis N (2008) Nutrient resorption patterns of plant functional groups in a tropical savanna: variation and functional significance. Oecologia 157:141–151. doi:10.1007/s00442-008-1047-5

    Article  PubMed  Google Scholar 

  • Robertson GP, Bledsoe CS, Coleman DC, Sollins P (1999) Standard soil methods for long-term ecological research. Oxford University Press, New York

    Google Scholar 

  • Rossatto DR, Silva LCR, Villalobos-Vega R, Sternberg LSL, Franco AC (2012) Depth of water uptake in woody plants relates to groundwater level and vegetation structure along a topographic gradient in a neotropical savanna. Environ Exp Bot 77:259–266. doi:10.1016/j.envexpbot.2011.11.025

    Article  Google Scholar 

  • Rossiter-Rachor NA, Setterfield SA, Douglas MM, Hutley LB, Cook GD (2008) Andropogon gayanus (Gamba Grass) invasion increases fire-mediated nitrogen losses in the tropical savannas of northern Australia. Ecosystems 11:77–88. doi:10.1007/s10021-007-9108-x

    Article  CAS  Google Scholar 

  • Sankaran M, Hanan NP, Scholes RJ et al (2005) Determinants of woody cover in African savannas. Nature 438:846–849. doi:10.1038/nature04070

    Article  CAS  PubMed  Google Scholar 

  • Scholes RJ, Frost PGH, Tian Y (2004) Canopy structure in savannas along a moisture gradient on Kalahari sands. Glob Change Biol 10:292–302. doi:10.1046/j.1529-8817.2003.00703.x

    Article  Google Scholar 

  • Scott KA, Setterfield SA, Andersen AN, Douglas MM (2009) Correlates of grass-species composition in a savanna woodland in northern Australia. Aust J Bot 57:10–17. doi:10.1071/BT08120

    Article  Google Scholar 

  • Silva DM, Batalha MA (2008) Soil–vegetation relationships in cerrados under different fire frequencies. Plant Soil 311:87–96. doi:10.1007/s11104-008-9660-y

    Article  CAS  Google Scholar 

  • Souza MC, Franco AC, Haridasan M, Rossatto DR, Araújo J, Morellato LPC, Habermann G (2015) The length of the dry season may be associated with leaf scleromorphism in cerrado plants. An Acad Bras Cienc. doi:10.1590/0001-376520150381 (in press)

    Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna. http://www.r-project.org. Accessed 9 Sept 2015

  • Wigley BJ, Coetsee C, Hartshorn AS, Bond WJ (2013) What do ecologists miss by not digging deep enough? Insights and methodological guidelines for assessing soil fertility status in ecological studies. Acta Oecol 51:17–27. doi:10.1016/j.actao.2013.05.007

    Article  Google Scholar 

  • Williams D, Cook GD (2001) Savanna landscapes. In: Dyer R, Jacklyn P, Partridge I, Russell-Smith J, Williams D (eds) Savanna burning. Understanding and using fire in northern Australia. Tropical Savannas Co-operative Research Centre, Darwin, pp 5–14

    Google Scholar 

  • Wright IJ, Reich PB, Westoby M (2001) Strategy shifts in leaf physiology, structure and nutrient content between species of high-and-low-rainfall and high and low-nutrient habitats. Funct Ecol 15:423–434. doi:10.1046/j.0269-8463.2001.00542.x

    Article  Google Scholar 

  • Zar JH (2010) Biostatistical analysis, 5th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgments

MCS acknowledges the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes) and the São Paulo Research Foundation (FAPESP) for PhD fellowships (Grants #2010/07809-1 and BEPE-FAPESP #2012/13762-3). GH (Grant #308902/2014-9) and LPCM (Grant #306119/2011-0 and #306243/2010-5) acknowledge the National Council for Scientific and Technological Development (CNPq) for research productivity fellowships. The authors also thank Jon Schatz (CSIRO) for assistance in the field, and Laura Wendling for editorial advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Claro de Souza.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by A. Franco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, M.C., Rossatto, D.R., Cook, G.D. et al. Mineral nutrition and specific leaf area of plants under contrasting long-term fire frequencies: a case study in a mesic savanna in Australia. Trees 30, 329–335 (2016). https://doi.org/10.1007/s00468-015-1285-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-015-1285-1

Keywords

Navigation