Skip to main content

Advertisement

Log in

Artificial intelligence in glomerular diseases

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

In this narrative review, we focus on the application of artificial intelligence in the clinical history of patients with glomerular disease, digital pathology in kidney biopsy, renal ultrasonography imaging, and prediction of chronic kidney disease (CKD). With the development of natural language processing, the clinical history of a patient can be used to identify a computable phenotype. In kidney pathology, digital imaging has adopted innovative deep learning algorithms (DLAs) that can improve the predictive capability of the examined lesions. However, at this time, these applications can only be used in research because there is no recognized validation to replace the conventional diagnostic applications. Kidney ultrasonography, used in the clinical examination of patients, provides information about the progression of kidney damage. Machine learning algorithms (MLAs) with promising results for the early detection of CKD have been proposed, but, still, they are not solid enough to be incorporated into the clinical practice. A few tools for glomerulonephritis, based on MLAs, are available in clinical practice. They can be downloaded on computers and cellular phones but can only be applied to uniracial cohorts of patients. To improve their performance, it is necessary to organize large consortia with multiracial cohorts. Finally, in many studies MLA development has been carried out using retrospective cohorts. The performance of the models might differ in retrospective cohorts compared to real-world data. Therefore, the models should be validated in prospective external large cohorts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Beam AL, Kohane IS (2018) Big Data and Machine Learning in Health Care. JAMA 319:1317–1318. https://doi.org/10.1001/jama.2017.18391

    Article  PubMed  Google Scholar 

  2. Koleck TA, Theresa A, Bourne PE, Bakken S (2019) Natural language processing of symptoms documented in free-text narratives of electronic health records: a systematic review. J Am Med Inform Assoc 26:364–379. https://doi.org/10.1093/jamia/ocy173

    Article  PubMed  PubMed Central  Google Scholar 

  3. Savova GK, Masanz JJ, Ogren PV, Zheng J et al (2010) Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and application. J Am Med Inform Assoc 17:507–513. https://doi.org/10.1136/jamia.2009.001560

    Article  PubMed  PubMed Central  Google Scholar 

  4. Aronson AR, Lang FM (2010) An overview of MetaMap: historical perspective and recent advances. J Am Med Inform Assoc 17:229–236. https://doi.org/10.1136/jamia.2009.002733

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shang N (2014) Integrating domain knowledge to improve signal detection from electronic health records for pharmacovigilance. UT SBMI Dissertation (Open Access). 26

  6. Polignano M, Narducci F, Iovine A, Musto C et al (2020) HealthAssistantBot: a personal health assistant for the Italian language. IEEE Access 8:107479–107497. https://doi.org/10.1109/ACCESS.2020.3000815

    Article  Google Scholar 

  7. Eikstadt RN, Desmond HE, Lindner C, Chen LY et al (2021) The Development and Use of an EHR-Linked Database for Glomerular Disease Research and Quality Initiatives. Glomerular Dis 1:173–179. https://doi.org/10.1159/000518187

    Article  Google Scholar 

  8. Kang E, Kim Y, Kim YC, Kim E et al (2020) Biobanking for glomerular diseases: a study design and protocol for KOrea Renal biobank NEtwoRk System TOward NExt-generation analysis (KORNERSTONE). BMC Nephrol 21:367. https://doi.org/10.1186/s12882-020-02016-z

    Article  PubMed  PubMed Central  Google Scholar 

  9. Oliverio AL, Marchel D, Troost JP, Ayoub I et al (2021) Validating a computable phenotype for nephrotic syndrome in children and adults using PCORnet® data. Kidney 360. 2:1979–1986. https://doi.org/10.34067/KID.0002892021

  10. Kolachalama VB, Singh P, Lin CQ, Mun D et al (2018) Association of Pathological Fibrosis With Renal Survival Using Deep Neural Networks. Kidney Int Rep 3:464–475. https://doi.org/10.1016/j.ekir.2017.11.002

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ginley B, Lutnick B, Jen KY, Fogo AB et al (2019) Computational Segmentation and Classification of Diabetic Glomerulosclerosis. J Am Soc Nephrol 30:1953–1967. https://doi.org/10.1681/ASN.2018121259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zeng C, Nan Y, Xu FT, Lei Q et al (2020) Identification of glomerular lesions and intrinsic glomerular cell types in kidney diseases via deep learning. J Pathology 252:53–64. https://doi.org/10.1002/path.5491

    Article  Google Scholar 

  13. Chagas P, Souza L, Araújo I, Aldeman N et al (2020) Classification of glomerular hypercellularity using convolutional features and support vector machine. Artif Intell Med 103:101808. https://doi.org/10.1016/j.artmed.2020.101808

    Article  PubMed  Google Scholar 

  14. Bueno G, Fernandez-Carrobles MM, Gonzalez-Lopez L, Deniz O (2020) Glomerulosclerosis identification in whole slide images using semantic segmentation. Comput Methods Programs Biomed 184:105273. https://doi.org/10.1016/j.cmpb.2019.105273

    Article  PubMed  Google Scholar 

  15. Jayapandian CP, Chen Y, Janowczyk AR, Palmer MB et al (2021) Development and evaluation of deep learning-based segmentation of histologic structures in the kidney cortex with multiple histologic stains. Kidney Int 99:86–101. https://doi.org/10.1016/j.kint.2020.07.044

    Article  CAS  PubMed  Google Scholar 

  16. Roberts IS, Cook HT, Troyanov S, Alpers CE et al (2009) The Oxford classification of IgA nephropathy: pathology definitions, correlations, and reproducibility. Kidney Int 76:546–556. https://doi.org/10.1038/ki.2009.168

    Article  PubMed  Google Scholar 

  17. Cattran DC, Coppo R, Cook HT, Fehally J et al (2009) The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification. Kidney Int 76:534–545. https://doi.org/10.1038/ki.2009.243

    Article  PubMed  Google Scholar 

  18. Tervaert TW, Mooyaart AL, Amann K, Cohen AH et al (2010) Pathologic classification of diabetic nephropathy. J Am Soc Nephrol 21:556–563. https://doi.org/10.1681/ASN.2010010010

    Article  PubMed  Google Scholar 

  19. Sheehan S, Mawe S, Cianciolo RE, Korstanje R, Mahoney JM (2019) Detection and Classification of Novel Renal Histologic Phenotypes Using Deep Neural Networks. Am J Pathol 189:1786–1796. https://doi.org/10.1016/j.ajpath.2019.05.019

    Article  PubMed  PubMed Central  Google Scholar 

  20. de Haan K, Zhang Y, Zuckerman JE, Liu T et al (2021) Deep learning-based transformation of H&E stained tissues into special stains. Nat Commun 12:4884. https://doi.org/10.1038/s41467-021-25221-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gupta L, Klinkhammer BM, Boor P, Merhof D, Gadermayr M (2019) Iterative learning to make the most of unlabeled and quickly obtained labeled data in histology. Proceedings of The 2nd International Conference on Medical Imaging with Deep Learning 105: 215–224

  22. Yang K, Leea C, Wangb HS, Shun-Chen Q et al (2021) Glomerular disease classification and lesion identification by machine learning. Biomed J S2319–4170(21):00111–00116. https://doi.org/10.1016/j.bj.2021.08.011

    Article  Google Scholar 

  23. Zhao K, Tang YJJ, Zhang T, Carvajal J et al (2018) DGDI: A Dataset for Detecting Glomeruli on Renal Direct Immunofluorescence. Presented at 2018 Digital Image Computing: Techniques and Applications, Camberra, Australia, December 10–13, 2018

  24. Ligabue G, Pollastri F, Fontana F, Leonelli M et al (2020) Evaluation of the Classification Accuracy of the Kidney Biopsy Direct Immunofluorescence through Convolutional Neural Networks. Clin J Am Soc Nephrol 15:1445–1454. https://doi.org/10.2215/CJN.03210320

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bommanna RK, Madheswaran M, Thyagarajah K (2008) A Hybrid Fuzzy-Neural System for Computer-Aided Diagnosis of Ultrasound Kidney Images Using Prominent Features. J Med Syst 32:65–83. https://doi.org/10.1007/s10916-007-9109-5

    Article  Google Scholar 

  26. Kuo CC, Chang CM, Liu KT, Lin WK et al (2019) Automation of the kidney function prediction and classification through ultrasound-based kidney imaging using deep learning. NPJ Digit Med 2:29. https://doi.org/10.1038/s41746-019-0104-2

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chen CJ, Pai TW, Hsu HH, Lee CH et al (2019) Prediction of chronic kidney disease stages by renal ultrasound imaging. Enterp Inf Syst 14:1–18. https://doi.org/10.1080/17517575.2019.1597386

    Article  Google Scholar 

  28. Kim D-H, Ye S-Y (2021) Classification of Chronic Kidney Disease in Sonography Using the GLCM and Artificial Neural Network. Diagnostics 11:864. https://doi.org/10.3390/diagnostics11050864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang L, Chen Z, Feng L, Guo L et al (2021) Preliminary study on the application of renal ultrasonography radiomics in the classification of glomerulopathy. BMC Med Imaging 21:115. https://doi.org/10.1186/s12880-021-00647-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Athavale AM, Hart PD, Itteera M, Cimbaluk D et al (2021) Development and Validation of a Deep Learning Model to Quantify Interstitial Fibrosis and Tubular Atrophy From Kidney Ultrasonography Images. JAMA Netw Open 4:e2111176. https://doi.org/10.1001/jamanetworkopen.2021.11176

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhu M, Ma L, Yang W, Tang L et al (2021) Elastography ultrasound with machine learning improves the diagnostic performance of traditional ultrasound in predicting kidney fibrosis. J Formosan Med Ass. https://doi.org/10.1001/10.1016/j.jfma.2021.08.011

    Article  Google Scholar 

  32. Wells BJ, Chagin KM, Li L, Hu B et al (2015) Using the landmark method for creating prediction models in large datasets derived from electronic health records. Health Care Manag Sci 18:86–92. https://doi.org/10.1007/s10729-014-9281-3

    Article  PubMed  Google Scholar 

  33. Obermeyer Z, Emanuel EJ (2016) Predicting the Future - Big Data, Machine Learning, and Clinical Medicine. N Engl J Med 375:1216–1219. https://doi.org/10.1056/NEJMp1606181

    Article  PubMed  PubMed Central  Google Scholar 

  34. Naumovic R, Furuncic D, Jovanovic D, Stosovic et al (2010) Application of artificial neural networks in estimating predictive factors and therapeutic efficacy in idiopathic membranous nephropathy. Biomed Pharmacother 64:633–638. https://doi.org/10.1016/j.biopha.2010.06.003

    Article  CAS  PubMed  Google Scholar 

  35. Di Noia T, Ostuni VC, Pesce F, Binetti G et al (2013) An end stage kidney disease predictor based on an artificial neural networks ensemble. Expert Syst Appl 40:4438–4445. https://doi.org/10.1016/j.eswa.2013.01.046

    Article  Google Scholar 

  36. Diciolla M, Binetti G, Di Noia T, Pesce F et al (2015) Patient classification and outcome prediction in IgA nephropathy. Comput Biol Med 66:278–286. https://doi.org/10.1016/j.compbiomed.2015.09.003

    Article  CAS  PubMed  Google Scholar 

  37. Pesce F, Diciolla M, Binetti G, Naso D et al (2016) Clinical decision support system for end-stage kidney disease risk estimation in IgA nephropathy patients. Nephrol Dial Transpl 31:80–86. https://doi.org/10.1093/ndt/gfv232

    Article  Google Scholar 

  38. Schena FP, Anelli VW, Trotta J, Di Noia T et al (2021) Development and testing of an artificial intelligence tool for predicting end-stage kidney disease in patients with immunoglobin A nephropathy. Kidney Int 99:1179–1188. https://doi.org/10.1016/j.kint.2020.07.046

    Article  CAS  PubMed  Google Scholar 

  39. Coppo R, Troyanov S, Bellur S, Cattran D et al (2014) Validation of the Oxford classification of IgA nephropathy in cohorts with different presentations and treatments. Kidney Int 86:828–836. https://doi.org/10.1038/ki.2014.63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu Y, Zhang Y, Liu D, Tan X et al (2018) Prediction of ESRD in IgA Nephropathy Patients from an Asian Cohort: A Random Forest Model. Kidney Blood Press Res 43:1852–1864. https://doi.org/10.1159/000495818

    Article  CAS  PubMed  Google Scholar 

  41. Chen T, Li X, Li Y, Xia E et al (2019) Prediction and Risk Stratification of Kidney Outcomes in IgA Nephropathy. Am J Kidney Dis 20:300–309. https://doi.org/10.1053/j.ajkd.2019.02.016

    Article  Google Scholar 

  42. Zhang P, Wang R, Shi N (2020) IgA Nephropathy Prediction in Children with Machine Learning Algorithms. Future Internet 12:230. https://doi.org/10.3390/fi12120230

    Article  Google Scholar 

  43. Kegerreis B, Catalina MD, Bachali P, Geraci NS et al (2018) Machine learning approaches to predict lupus disease activity from gene expression data. Sci Rep 9:9617. https://doi.org/10.1038/s41598-019-45989-0

    Article  CAS  Google Scholar 

  44. Ceccarelli F, Sciandrone M, Perricone C, Galvan G et al (2017) Prediction of chronic damage in systemic lupus erythematosus by using machine-learning models. PLoS One 12:e0174200. https://doi.org/10.1371/journal.pone.0174200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rajimehr R, Farsiu S, Montaser Kouhsari L, Bidari A et al (2002) Prediction of lupus nephritis in patients with systemic lupus erythematosus using artificial neural networks. Lupus 11:485–492. https://doi.org/10.1191/0961203302lu226oa

    Article  CAS  PubMed  Google Scholar 

  46. Chen Y, Huang S, Chen T, Liang D et al (2021) Machine Learning for Prediction and Risk Stratification of Lupus Nephritis Renal Flare. Am J Nephrol 52:152–160. https://doi.org/10.1159/000513566

    Article  CAS  PubMed  Google Scholar 

  47. Wolf BJ, Spainhour JC, Arthur JM, Janech MG, Petri M, Oates JC (2016) Development of Biomarker Models to Predict Outcomes in Lupus Nephritis. Arthritis Rheumatol 68:1955–1963. https://doi.org/10.1002/art.39623

    Article  CAS  Google Scholar 

  48. Helget LN, Dillon DJ, Wolf B, Parks LP et al (2021) Development of a lupus nephritis suboptimal response prediction tool using renal histopathological and clinical laboratory variables at the time of diagnosis. Lupus Sci Med 8:e000489. https://doi.org/10.1136/lupus-2021-000489

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ellahham S (2020) Artificial Intelligence: The Future for Diabetes Care. Am J Med 133:895–900. https://doi.org/10.1016/j.amjmed.2020.03.033

    Article  CAS  PubMed  Google Scholar 

  50. Murphy SN, Weber G, Mendis M, Gainer V et al (2010) Serving the enterprise and beyond with informatics for integrating biology and the bedside (i2b2). JAMA 17:124–130. https://doi.org/10.1136/jamia.2009.000893

    Article  Google Scholar 

  51. Song X, Waitman LR, Hu Y, Yu ASL et al (2019) Robust clinical marker identification for diabetic kidney disease with ensemble feature selection. J Am Med Informatics Ass 26:242–253. https://doi.org/10.1093/jamia/ocy165

    Article  Google Scholar 

  52. Leung RKK, Wang Y, Ma RCW, Luk AOY et al (2013) Using a multi-staged strategy based on machine learning and mathematical modeling to predict genotype-phenotype risk patterns in diabetic kidney disease: a prospective case–control cohort analysis. BMC Nephrol 14:162. https://doi.org/10.1186/1471-2369-14-162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Meza-Palacios R, Aguilar-Lasserre AA, Ureña-Bogarín EL, Vázquez-Rodríguez CF et al (2017) Development of a fuzzy expert system for the nephropathy control assessment in patients with type 2 diabetes mellitus. Expert Syst Appl 72:335–343. https://doi.org/10.1016/j.eswa.2016.10.053

    Article  Google Scholar 

  54. Makino M, Yoshimoto R, Ono M, Itoko T et al (2019) Artificial intelligence predicts the progression of diabetic kidney disease using big data machine learning. Sci Rep 9:11862. https://doi.org/10.1038/s41598-019-48263-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Katsuki T, Ono M, Koseki A, Kudo M et al (2018) Risk Prediction of Diabetic Nephropathy via Interpretable Feature Extraction from EHR Using Convolutional Autoencoder. Stud Health Technol Inform 247:106–110. https://doi.org/10.3233/978-1-61499-852-5-106

    Article  PubMed  Google Scholar 

  56. Chang H, Han J, Zhong C, Snijders AM et al (2018) Unsupervised transfer learning via multiscale convolutional sparse coding for biomedical applications. IEEE Trans Pattern Anal Mach Intell 40:1182–1194. https://doi.org/10.1109/TPAMI.2017.2656884

    Article  PubMed  Google Scholar 

  57. Uzunova H, Schultz S, Handels H, Ehrhardt J (2019) Unsupervised pathology detection in medical images using conditional variational autoencoders. Int J Comput Assist Radiol Surg 14:451–461

    Article  Google Scholar 

Download references

Acknowledgements

The work has been financially supported by a grant of the Italian Ministry of University (PON RI ARS01_00876). The funder had no role in the design of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco P. Schena.

Ethics declarations

Conflict of interest

All authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schena, F.P., Magistroni, R., Narducci, F. et al. Artificial intelligence in glomerular diseases. Pediatr Nephrol 37, 2533–2545 (2022). https://doi.org/10.1007/s00467-021-05419-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-021-05419-8

Keywords

Navigation