Skip to main content
Log in

p62/SQSTM1 prominently accumulates in renal proximal tubules in nephropathic cystinosis

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Nephropathic cystinosis, a lysosomal storage disorder, is associated with generalized proximal tubular dysfunction and progressive renal failure. The underlying molecular and cellular mechanisms leading to renal tubular injury remain largely unknown. Abnormal induction of autophagy has been shown in cystinosis. We have studied the autophagic flux in cystinosis by evaluating autophagy-specific substrates.

Methods

LC3 and p62 expression was evaluated by (1) immunohistochemistry performed on kidney biopsies obtained from four nephropathic cystinosis patients, four patients with renal injury due to causes other than cystinosis, and four normal kidney tissues and (2) fluorescence imaging in cultured renal proximal tubular epithelial (RPTE) cells obtained from four nephropathic cystinosis patients and two lots of normal primary RPTE cells, both in basal and starvation conditions. p62 expression was also corroborated by western blot analysis in RPTE cells.

Results

There was a significant buildup of p62 protein in patients with nephropathic cystinosis, specifically in the proximal tubules in kidney biopsies and RPTE cells (p = 0.0004), and the accumulation was further enhanced upon starvation. Cystinotic RPTE cells exhibited a significant co-localization of p62 with LC3.

Conclusions

Our findings indicate a potential block in the autophagic flux in cystinosis, thus providing key insights into the underlying mechanisms of tubular injury in cystinosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gahl WA, Thoene JG, Schneider JA (2002) Cystinosis. N Engl J Med 347:111–121

    Article  PubMed  Google Scholar 

  2. Schneider JA, Clark KF, Greene AA, Reisch JS, Markello TC, Gahl WA, Thoene JG, Noonan PK, Berry KA (1995) Recent advances in the treatment of cystinosis. J Inherit Metab Dis 18:387–397

    Article  PubMed  CAS  Google Scholar 

  3. Coor C, Salmon RF, Quigley R, Marver D, Baum M (1991) Role of adenosine triphosphate (ATP) and NaK ATPase in the inhibition of proximal tubule transport with intracellular cystine loading. J Clin Invest 87:955–961

    Article  PubMed  CAS  Google Scholar 

  4. Sakarcan A, Aricheta R, Baum M (1992) Intracellular cystine loading causes proximal tubule respiratory dysfunction: effect of glycine. Pediatr Res 32:710–713

    Article  PubMed  CAS  Google Scholar 

  5. Levtchenko EN, Wilmer MJ, Janssen AJ, Koenderink JB, Visch HJ, Willems PH, de Graaf-Hess A, Blom HJ, van den Heuvel LP, Monnens LA (2006) Decreased intracellular ATP content and intact mitochondrial energy generating capacity in human cystinotic fibroblasts. Pediatr Res 59:287–292

    Article  PubMed  CAS  Google Scholar 

  6. Wilmer MJ, van den Heuvel LP, Rodenburg RJ, Vogel RO, Nijtmans LG, Monnens LA, Levtchenko EN (2008) Mitochondrial complex V expression and activity in cystinotic fibroblasts. Pediatr Res 64:495–497

    Article  PubMed  CAS  Google Scholar 

  7. Park M, Helip-Wooley A, Thoene J (2002) Lysosomal cystine storage augments apoptosis in cultured human fibroblasts and renal tubular epithelial cells. J Am Soc Nephrol 13:2878–2887

    Article  PubMed  CAS  Google Scholar 

  8. Park MA, Pejovic V, Kerisit KG, Junius S, Thoene JG (2006) Increased apoptosis in cystinotic fibroblasts and renal proximal tubule epithelial cells results from cysteinylation of protein kinase Cdelta. J Am Soc Nephrol 17:3167–3175

    Article  PubMed  CAS  Google Scholar 

  9. Sansanwal P, Li L, Hsieh SC, Sarwal MM (2010) Insights into novel cellular injury mechanisms by gene expression profiling in nephropathic cystinosis. J Inherit Metab Dis 33:775–786

    Article  PubMed  CAS  Google Scholar 

  10. Sansanwal P, Kambham N, Sarwal MM (2010) Caspase-4 may play a role in loss of proximal tubules and renal injury in nephropathic cystinosis. Pediatr Nephrol 25:105–109

    Article  PubMed  Google Scholar 

  11. Sansanwal P, Yen B, Gahl WA, Ma Y, Ying L, Wong LJ, Sarwal MM (2010) Mitochondrial autophagy promotes cellular injury in nephropathic cystinosis. J Am Soc Nephrol 21:272–283

    Article  PubMed  CAS  Google Scholar 

  12. Mizushima N (2007) Autophagy: process and function. Genes Dev 21:2861–2873

    Article  PubMed  CAS  Google Scholar 

  13. Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10:458–467

    Article  PubMed  CAS  Google Scholar 

  14. Yang Z, Klionsky DJ (2009) An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 335:1–32

    Article  PubMed  CAS  Google Scholar 

  15. Settembre C, Fraldi A, Jahreiss L, Spampanato C, Venturi C, Medina D, de Pablo R, Tacchetti C, Rubinsztein DC, Ballabio A (2008) A block of autophagy in lysosomal storage disorders. Hum Mol Genet 17:119–129

    Article  PubMed  CAS  Google Scholar 

  16. Komatsu M, Ueno T, Waguri S, Uchiyama Y, Kominami E, Tanaka K (2007) Constitutive autophagy: vital role in clearance of unfavorable proteins in neurons. Cell Death Differ 14:887–894

    PubMed  CAS  Google Scholar 

  17. Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, Mizushima N, Iwata J, Ezaki J, Murata S, Hamazaki J, Nishito Y, Iemura S, Natsume T, Yanagawa T, Uwayama J, Warabi E, Yoshida H, Ishii T, Kobayashi A, Yamamoto M, Yue Z, Uchiyama Y, Kominami E, Tanaka K (2007) Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131:1149–1163

    Article  PubMed  CAS  Google Scholar 

  18. Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169:425–434

    Article  PubMed  CAS  Google Scholar 

  19. Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171:603–614

    Article  PubMed  Google Scholar 

  20. Racusen LC, Wilson PD, Hartz PA, Fivush BA, Burrow CR (1995) Renal proximal tubular epithelium from patients with nephropathic cystinosis: immortalized cell lines as in vitro model systems. Kidney Int 48:536–543

    Article  PubMed  CAS  Google Scholar 

  21. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477

    Article  PubMed  CAS  Google Scholar 

  22. Jackson JD, Smith FG, Litman NN, Yuile CL, Latta H (1962) The Fanconi syndrome with cystinosis. Electron microscopy of renal biopsy specimens from five patients. Am J Med 33:893–910

    Article  PubMed  CAS  Google Scholar 

  23. Spear GS, Slusser RJ, Tousimis AJ, Taylor CG, Schulman JD (1971) Cystinosis. An ultrastructural and electron-probe study of the kidney with unusual findings. Arch Pathol 91:206–221

    PubMed  CAS  Google Scholar 

  24. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Øvervatn A, Bjørkøy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145

    Article  PubMed  CAS  Google Scholar 

  25. Ichimura Y, Kumanomidou T, Sou YS, Mizushima T, Ezaki J, Ueno T, Kominami E, Yamane T, Tanaka K, Komatsu M (2008) Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem 283:22847–22857

    Article  PubMed  CAS  Google Scholar 

  26. Wei H, Kim SJ, Zhang Z, Tsai PC, Wisniewski KE, Mukherjee AB (2008) ER and oxidative stresses are common mediators of apoptosis in both neurodegenerative and non-neurodegenerative lysosomal storage disorders and are alleviated by chemical chaperones. Hum Mol Genet 17:469–477

    Article  PubMed  CAS  Google Scholar 

  27. Nezis IP, Simonsen A, Sagona AP, Finley K, Gaumer S, Contamine D, Rusten TE, Stenmark H, Brech A (2008) Ref(2)P, the Drosophila melanogaster homologue of mammalian p62, is required for the formation of protein aggregates in adult brain. J Cell Biol 180:1065–1071

    Article  PubMed  CAS  Google Scholar 

  28. Nevo N, Chol M, Bailleux A, Kalatzis V, Morisset L, Devuyst O, Gubler MC, Antignac C (2010) Renal phenotype of the cystinosis mouse model is dependent upon genetic background. Nephrol Dial Transplant 25:1059–1066

    Article  PubMed  CAS  Google Scholar 

  29. Cherqui S, Sevin C, Hamard G, Kalatzis V, Sich M, Pequignot MO, Gogat K, Abitbol M, Broyer M, Gubler MC, Antignac C (2002) Intralysosomal cystine accumulation in mice lacking cystinosin, the protein defective in cystinosis. Mol Cell Biol 22:7622–7632

    Article  PubMed  CAS  Google Scholar 

  30. Gahl WA, Balog JZ, Kleta R (2007) Nephropathic cystinosis in adults: natural history and effects of oral cysteamine therapy. Ann Intern Med 147:242–250

    PubMed  Google Scholar 

  31. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889

    Article  PubMed  CAS  Google Scholar 

  32. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. William Gahl and Dr. Lorraine Racusen for their generous gift of cystinosis RPTE cells. We gratefully acknowledge Dr. Neeraja Kambham’s (Stanford University) help with immunohistochemistry experiments. This work was supported by grants from the Cystinosis Foundation Ireland, Health Research Board Ireland and the Intramural Research Program of the National Human Genome Research Institute, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Poonam Sansanwal or Minnie M. Sarwal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sansanwal, P., Sarwal, M.M. p62/SQSTM1 prominently accumulates in renal proximal tubules in nephropathic cystinosis. Pediatr Nephrol 27, 2137–2144 (2012). https://doi.org/10.1007/s00467-012-2227-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-012-2227-4

Keywords

Navigation