Skip to main content
Log in

Data-driven synchronization-avoiding algorithms in the explicit distributed structural analysis of soft tissue

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We propose a data-driven framework to increase the computational efficiency of the explicit finite element method in the structural analysis of soft tissue. An encoder–decoder long short-term memory deep neural network is trained based on the data produced by an explicit, distributed finite element solver. We leverage this network to predict synchronized displacements at shared nodes, minimizing the amount of communication between processors. We perform extensive numerical experiments to quantify the accuracy and stability of the proposed synchronization-avoiding algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47

Similar content being viewed by others

References

  1. Aslam M, Riaz O, Mumtaz S, Asif AD (2020) Performance comparison of GPU-based Jacobi solvers using CUDA provided synchronization methods. IEEE Access 8:31792–31812

    Article  Google Scholar 

  2. Bakarji J, Champion K, Kutz JN, Brunton SL (2022) Discovering governing equations from partial measurements with deep delay autoencoders. arXiv preprint arXiv:2201.05136

  3. Bartezzaghi A, Cremonesi M, Parolini N, Perego U (2015) An explicit dynamics GPU structural solver for thin shell finite elements. Comput Struct 154:29–40

    Article  Google Scholar 

  4. Belytschko T, Liu WK, Moran B, Elkhodary K (2014) Nonlinear finite elements for continua and structures. Wiley, Hoboken

    MATH  Google Scholar 

  5. Bhat U, Munch SB (2022) Recurrent neural networks for partially observed dynamical systems. Phys Rev E 105:044205

    Article  MathSciNet  Google Scholar 

  6. Brunton SL, Proctor JL, Kutz JN (2016) Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc Natl Acad Sci 113(15):3932–3937

    Article  MathSciNet  MATH  Google Scholar 

  7. Chang B, Chen MM, Haber E, Chi EH (2019) AntisymmetricRNN: a dynamical system view on recurrent neural networks

  8. Chen Q (2020) MGMETIS: mesh & graph METIS partitioning. GitHub repository. https://github.com/chiao45/mgmetis

  9. Chen Z, Churchill V, Wu KL, Xiu DB (2022) Deep neural network modeling of unknown partial differential equations in nodal space. J Comput Phys 449:110782

    Article  MathSciNet  MATH  Google Scholar 

  10. Churchill V, Xiu DB (2022) Deep learning of chaotic systems from partially-observed data. arXiv preprint arXiv:2205.08384

  11. Clough RW, Penzien J (1993) Dynamics of structures. Civil engineering series. McGraw-Hill, New York

    MATH  Google Scholar 

  12. Fu XH, Chang LB, Xiu DB (2020) Learning reduced systems via deep neural networks with memory. J Mach Learn Model Comput 1(2):97

    Article  Google Scholar 

  13. Funahashi K, Nakamura Y (1993) Approximation of dynamical systems by continuous time recurrent neural networks. Neural Netw 6(6):801–806

    Article  Google Scholar 

  14. Garnelo M, Rosenbaum D, Maddison C, Ramalho T, Saxton D, Shanahan M, Teh YW, Rezende D, Eslami SMA (Jul 2018) Conditional neural processes. In: Proceedings of the 35th international conference on machine learning, volume 80 of Proceedings of Machine Learning Research, pp 1704–1713. PMLR, 10–15

  15. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge

    MATH  Google Scholar 

  16. He KM, Zhang XY, Ren SQ, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 770–778

  17. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780

    Article  Google Scholar 

  18. Hu YH, Zhao T, Xú SX, Xu ZL, Lin LZ (2022) Neural-PDE: a RNN based neural network for solving time dependent PDEs. Commun Inf Syst

  19. Hughes TJR (2012) The finite element method: linear static and dynamic finite element analysis. Dover Publications, INC., Mineola

    Google Scholar 

  20. Huthwaite P (2014) Accelerated finite element elastodynamic simulations using the GPU. J Comput Phys 257:687–707

    Article  MathSciNet  MATH  Google Scholar 

  21. Joldes GR, Wittek A, Miller K (2010) Real-time nonlinear finite element computations on GPU-application to neurosurgical simulation. Comput Methods Appl Mech Eng 199(49–52):3305–3314

    Article  MATH  Google Scholar 

  22. Jung J, Jun H, Lee PS (2022) Self-updated four-node finite element using deep learning. Comput Mech 69(1):23–44

    Article  MathSciNet  MATH  Google Scholar 

  23. Jung J, Yoon K, Lee PS (2020) Deep learned finite elements. Comput Methods Appl Mech Eng 372:113401

    Article  MathSciNet  MATH  Google Scholar 

  24. Kaheman K, Kutz JN, Brunton SL (2020) SINDy-PI: a robust algorithm for parallel implicit sparse identification of nonlinear dynamics. Proc R Soc A Math Phys Eng Sci 476(2242):20200279

    MathSciNet  MATH  Google Scholar 

  25. Kaiser E, Kutz JN, Brunton SL (2021) Data-driven discovery of Koopman Eigenfunctions for control. Mach Learn Sci Technol 2(3):035023

    Article  Google Scholar 

  26. Karypis George, Kumar Vipin (2009) MeTis: unstructured graph partitioning and sparse matrix ordering system, Version 4.0. http://www.cs.umn.edu/~metis

  27. Kim HJ, Vignon-Clementel IE, Coogan JS, Figueroa CA, Jansen KE, Taylor CA (2010) Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann Biomed Eng 38(10):3195–3209

    Article  Google Scholar 

  28. Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980

  29. Komatitsch D, Erlebacher G, Göddeke D, Michéa D (2010) High-order finite-element seismic wave propagation modeling with MPI on a large GPU cluster. J Comput Phys 229(20):7692–7714

    Article  MathSciNet  MATH  Google Scholar 

  30. Kovacs A, Exl L, Kornell A, Fischbacher J, Hovorka M, Gusenbauer M, Breth L, Oezelt H, Yano M, Sakuma N, Kinoshita A, Shoji T, Kato A, Schrefl T (2022) Conditional physics informed neural networks. Commun Nonlinear Sci Numer Simul 104:106041

    Article  MathSciNet  MATH  Google Scholar 

  31. Kronbichler M, Ljungkvist K (2019) Multigrid for matrix-free high-order finite element computations on graphics processors. ACM Trans Parallel Comput 6(1):1–32

    Article  Google Scholar 

  32. Kulowski L (2020) LSTM_encoder_decoder. GitHub repository: https://github.com/lkulowski/LSTM_encoder_decoder

  33. Kutz JN, Brunton SL, Brunton BW, Proctor JL (2016) Dynamic mode decomposition: data-driven modeling of complex systems. SIAM

  34. Li X, Schiavazzi DE (2021) An ensemble solver for segregated cardiovascular FSI. Comput Mech 68(6):1421–1436

    Article  MathSciNet  MATH  Google Scholar 

  35. Lu L, Jin PZ, Pang GF, Zhang ZQ, Karniadakis GE (2021) Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nat Mach Intell 3(3):218–229

    Article  Google Scholar 

  36. Malhotra P, Ramakrishnan A, Anand G, Vig L, Agarwal P, Shroff G (2016) LSTM-based encoder-decoder for multi-sensor anomaly detection

  37. McCaslin SE, Shiakolas PS, Dennis BH, Lawrence KL (2012) Closed-form stiffness matrices for higher order tetrahedral finite elements. Adv Eng Softw 44(1):75–79

    Article  Google Scholar 

  38. Olovsson L, Simonsson K, Unosson M (2005) Selective mass scaling for explicit finite element analyses. Int J Numer Meth Eng 63(10):1436–1445

    Article  MATH  Google Scholar 

  39. Park SH, Kim BD, Kang CM, Chung CC, Choi JW (2018) Sequence-to-sequence prediction of vehicle trajectory via LSTM encoder-decoder architecture. In: 2018 IEEE intelligent vehicles symposium (IV). pp 1672–1678. IEEE

  40. Partin L, Geraci G, Rushdi A, Eldred MS, Schiavazzi DE (2022) Multifidelity data fusion in convolutional encoder/decoder networks

  41. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin ZM, Gimelshein N, Antiga L et al (2019) Pytorch: an imperative style, high-performance deep learning library. Adv Neural Inf Process Syst 32:8026–8037

    Google Scholar 

  42. Qin T, Wu KL, Xiu DB (2019) Data driven governing equations approximation using deep neural networks. J Comput Phys 395:620–635

    Article  MathSciNet  MATH  Google Scholar 

  43. Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707

    Article  MathSciNet  MATH  Google Scholar 

  44. Sanchez-Gonzalez A, Godwin J, Pfaff T, Ying R, Leskovec J, Battaglia PW (2020) Learning to simulate complex physics with graph networks. In: Proceedings of the 37th international conference on machine learning. ICML’20. JMLR.org

  45. Schillinger D, Evans JA, Frischmann F, Hiemstra RR, Hsu MC, Hughes TJR (2015) A collocated C0 finite element method: Reduced quadrature perspective, cost comparison with standard finite elements, and explicit structural dynamics. Int J Numer Meth Eng 102(3–4):576–631

    Article  MATH  Google Scholar 

  46. Scovazzi G, Carnes B, Zeng X, Rossi S (2016) A simple, stable, and accurate linear tetrahedral finite element for transient, nearly, and fully incompressible solid dynamics: a dynamic variational multiscale approach. Int J Numer Meth Eng 106(10):799–839

  47. Seo J, Schiavazzi DE, Kahn AM, Marsden AL (2020) The effects of clinically-derived parametric data uncertainty in patient-specific coronary simulations with deformable walls. Int J Numer Methods Biomed Eng 36(8):e3351

  48. Seo J, Schiavazzi DE, Marsden AL (2019) Performance of preconditioned iterative linear solvers for cardiovascular simulations in rigid and deformable vessels. Comput Mech 64(3):717–739

    Article  MathSciNet  MATH  Google Scholar 

  49. Shea DE, Brunton SL, Kutz JN (2021) SINDy-BVP: sparse identification of nonlinear dynamics for boundary value problems. Phys Rev Res 3:023255

    Article  Google Scholar 

  50. Sherstinsky A (2020) Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys D 404:132306

    Article  MathSciNet  MATH  Google Scholar 

  51. Shiakolas PS, Nambiar RV, Lawrence KL, Rogers WA (1992) Closed-form stiffness matrices for the linear strain and quadratic strain tetrahedron finite elements. Comput Struct 45(2):237–242

    Article  MATH  Google Scholar 

  52. Stoter SKF, Nguyen TH, Hiemstra RR, Schillinger D (2022) Variationally consistent mass scaling for explicit time-integration schemes of lower- and higher-order finite element methods

  53. Strbac V, Pierce DM, Vander Sloten J, Famaey N (2017) GPGPU-based explicit finite element computations for applications in biomechanics: the performance of material models, element technologies, and hardware generations. Comput Methods Biomech Biomed Engin 20(16):1643–1657

    Article  Google Scholar 

  54. Taylor ZA, Cheng M, Ourselin S (2008) High-speed nonlinear finite element analysis for surgical simulation using graphics processing units. IEEE Trans Med Imaging 27(5):650–663

    Article  Google Scholar 

  55. Vlachas PR, Byeon W, Wan ZY, Sapsis TP, Koumoutsakos P (2018) Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks. Proc R Soc A Math Phys Eng Sci 474(2213):20170844

    MathSciNet  MATH  Google Scholar 

  56. Wu KL, Xiu DB (2020) Data-driven deep learning of partial differential equations in modal space. J Comput Phys 408:109307

    Article  MathSciNet  MATH  Google Scholar 

  57. Zienkiewicz OC, Taylor RL, Too JM (1971) Reduced integration technique in general analysis of plates and shells. Int J Numer Meth Eng 3(2):275–290

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by a NSF CAREER award #1942662 (PI DES), a NSF CDS &E award #2104831 (PI DES) and used computational resources provided through the Center for Research Computing at the University of Notre Dame. The authors would like to thank Prof. Zhiliang Xu and Prof. Guosheng Fu for their comments and suggestions that contributed to improve the quality of the present manuscript. The authors would also like to thank the anonymous reviewers for their insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele E. Schiavazzi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, G.G., Schiavazzi, D.E. Data-driven synchronization-avoiding algorithms in the explicit distributed structural analysis of soft tissue. Comput Mech 71, 453–479 (2023). https://doi.org/10.1007/s00466-022-02248-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-022-02248-w

Keywords

Navigation