Skip to main content
Log in

Mathematical foundations of FEM-cluster based reduced order analysis method and a spectral analysis algorithm for improving the accuracy

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

As a reduced order homogenization approach, the FEM-Cluster based reduced order Analysis method (FCA) proposed by Cheng et al. provides an efficient approach to predict the nonlinear effective properties of heterogeneous materials. In its improved version, the clustered Minimum Complementary Energy (MCE) approach is adopted for the computations of incremental strain–stress relation. This work mainly focuses on the mathematical foundations of FCA with clustered MCE. The completeness of the interaction matrix as the clustered self-equilibrium stress space is proved, and the prediction error of FCA solution is analyzed. The deductions also reveal that some bases of the clustered self-equilibrium stress space denoted by the interaction matrix may contradict the basic hypothesis of the cluster-based reduce order methods, and they are mainly responsible for the error of FCA. According to this observation, a spectral analysis algorithm is developed to refine the interaction matrix and improve the accuracy of FCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\({0}_{m}\in {\mathbb{R}}^{m}\) :

\(m\)-order vector with all elements equaling zero

\({I}_{m}\in {\mathbb{R}}^{m\times m}\) :

\(m\)-order identity matrix

\(rank\left(a\right)\) :

Rank of the matrix a

\(dim\) :

Dimension of the problem

\(d\) :

Number of degree of freedom in strain or stress

\(N\) :

Number of clusters

\(n\) :

Number of elements in the finite element model

\({e}_{i}\in {\mathbb{R}}^{d}\) :

Unit orthogonal vector

\(\Omega \subset {\mathbb{R}}^{dim}\) :

Domain of the representative unit cell

\({\Omega }_{I}\subset\Omega \) :

Domain of the Ith cluster

\(\left|\Omega \right|\) :

Volume of Ω

\(\left|{\Omega }_{I}\right|\) :

Volume of Ωl

\({\chi }_{I}\left(x\right)\) :

Characteristic functions of Ωl, see (5)

\(\varepsilon \left(x\right):\Omega \to {\mathbb{R}}^{d}\) :

Strain

\({\varepsilon }^{mech}\left(x\right):\Omega \to {\mathbb{R}}^{d}\) :

Mechanical strain

\({\varepsilon }^{0}\in {\mathbb{R}}^{d}\) :

Uniform loaded eigenstrain

\(\sigma \left(x\right):\Omega \to {\mathbb{R}}^{d}\) :

Stress

\({\tilde{\sigma }}_{I}\in {\mathbb{R}}^{d}\) :

Average of σ in Ωl, see (7)

\(\overline{Q }\) :

Cluster-average operator, see (6)

\(\widehat{Q}\) :

Cluster-approximation operator, see (18)

\(\overline{A }\) :

Cluster-average of A whose columns are stress, see (15)

\(\widehat{A}\) :

Cluster-approximation of \(A\) whose columns are stress, see (12)

\(\langle \cdot \rangle \) :

Integration over Ω that \( \left\langle {a\left( x \right)} \right\rangle = \mathop \smallint \limits_{{x \in \Omega }}^{{}} a\left( x \right)dx \)

\(span\left(A\right)\) :

Space spanned by the columns of A

\({\mathbb{E}}\) :

Complete self-equilibrium stress set

\(\Sigma \) :

Generalized orthogonal complete self-equilibrium stress set

\({\Sigma }_{i}\left(x\right):\Omega \to {\mathbb{R}}^{d}\) :

Stress bases (columns) of Σ, see (21)

\({\lambda }_{i}\) :

Eigenvalues in spectral analysis algorithm, see (21)

\(S\left(x\right):\Omega \to Sym(d)\) :

Inverse of algorithmic tangent moduli

\({S}^{E}\in Sym(d)\) :

Material compliance in linear elastic stage

\({\mathbb{S}}\left(x\right):\Omega \to Sym(d)\) :

Unique inverse of algorithmic tangent moduli, see (36)

\(\overline{S }\in Sym(Nd)\) :

Block diagonal matrix of inverse of algorithmic tangent moduli in all clusters, see (12)

\(\overline{V }\in Sym(Nd)\) :

Block diagonal matrix of clusters’ volume, see (12)

\(\mathcal{A}\) :

Strain-concentration factors

\(D\) :

Interaction matrix, see (13)

\({D}^{*}\) :

Interaction matrix obtained with spectral analysis algorithm, see (54)

\({\mathbb{E}}^{D}\) :

Self-equilibrium stress set for creating D

\({\mathbb{E}}_{I,i}^{D}\left(x\right):\Omega \to {\mathbb{R}}^{d}\) :

Columns of \({\mathbb{E}}^{D}{\mathbb{E}}^{D}\)

\({\varepsilon }_{I,i}^{0}\left(x\right):\Omega \to {\mathbb{R}}^{d}\) :

Eigenstrain for obtaining \({\mathbb{E}}_{{I,i}}^{D}{\mathbb{E}}_{{I,i}}^{D}\)

\({\Vert \cdot \Vert }_{S}\) :

Distance metric for stress, see (24)

\(\Delta {\sigma }_{DNS}\left(x\right):\Omega \to {\mathbb{R}}^{d}\) :

Stress solution of DNS approach

\(\Delta {\widehat{\sigma }}_{FCA}\left(x\right):\Omega \to {\mathbb{R}}^{d}\) :

Stress solution of FCA approach with D

\(\Delta {\widehat{\sigma }}_{FCA}^{*}\left(x\right):\Omega \to {\mathbb{R}}^{d}\) :

Stress solution of FCA approach with D

References

  1. Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond 241:376–396

    MathSciNet  MATH  Google Scholar 

  2. Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 13:213–222

    Article  Google Scholar 

  3. Christensen RM, Lo KH (1979) Solutions for effective shear properties in three phase sphere and cylinder models. J Mech Phys Solids 27:315–330

    Article  MATH  Google Scholar 

  4. Benveniste Y (1987) A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech Mater 6:147–157

    Article  Google Scholar 

  5. Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21:571–574

    Article  Google Scholar 

  6. Voigt AW (1889) Über die Beziehung zwischen den beiden Elastizitätskonstanten isotroper Körper. Wied Ann 38:573–587

    Article  MATH  Google Scholar 

  7. Reuss A (1929) Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Z angew Math Mech 9:49–58

    Article  MATH  Google Scholar 

  8. Hashin Z, Shtrikman S (1962) A variational approach to the theory of the elastic behaviour of polycrystals. J Mech Phys Solids 10:343–352

    Article  MathSciNet  MATH  Google Scholar 

  9. Bensoussan A, Lions J-L, Papanicolaou G (1991) Asymptotic analysis for periodic structures. Am Math Soc Encyclopedia Math Appl 20:307–309

    MATH  Google Scholar 

  10. Hao P, Wang B, Li G et al (2014) Hybrid optimization of hierarchical stiffened shells based on smeared stiffener method and finite element method. Thin-Walled Struct 82:46–54

    Article  Google Scholar 

  11. Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput Methods Appl Mech Eng 157:69–94

    Article  MathSciNet  MATH  Google Scholar 

  12. Müller V, Kabel M, Andrä H, Böhlke T (2015) Homogenization of linear elastic properties of short-fiber reinforced composites—a comparison of mean field and voxel-based methods. Int J Solids Struct 67–68:56–70

    Article  Google Scholar 

  13. Wang B, Fang G, Liu S, Fu M, Liang J (2018) Progressive damage analysis of 3D braided composites using FFT-based method. Compos Struct 192:255–263

    Article  Google Scholar 

  14. Schneider M (2021) A review of non-linear FFT-based computational homogenization methods. Acta Mech 232:2051–2100

    Article  MathSciNet  MATH  Google Scholar 

  15. Brisard S (2017) Reconstructing displacements from the solution to the periodic Lippmann-Schwinger equation discretized on a uniform grid. Int J Numer Methods Eng 109(4):459–486

    Article  MathSciNet  Google Scholar 

  16. Zeman J, de Geus TWJ, Vondřejc J, Peerlings RHJ, Geers MGD (2017) A finite element perspective on nonlinear FFT-based micromechanical simulations. Int J Numer Methods Eng 111(10):903–926

    Article  MathSciNet  Google Scholar 

  17. Brisard S, Dormieux L (2010) FFT-based methods for the mechanics of composites: A general variational framework. Comput Mater Sci 49(3):663–671

    Article  Google Scholar 

  18. Brisard S, Dormieux L (2012) Combining Galerkin approximation techniques with the principle of Hashin and Shtrikman to derive a new FFT-based numerical method for the homogenization of composites. Comput Methods Appl Mech Eng 217–220:197–212

    Article  MathSciNet  MATH  Google Scholar 

  19. Feyel F (2003) A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua. Comput Methods Appl Mech Eng 192(28–30):3233–3244

    Article  MATH  Google Scholar 

  20. Matsui K, Terada K, Yuge K (2004) Two-scale finite element analysis of heterogeneous solids with periodic microstructures. Comput Struct 82:593–606

    Article  Google Scholar 

  21. Terada K, Kato J, Hirayama N, Inugai T, Yamamoto K (2013) A method of two-scale analysis with micro-macro decoupling scheme: application to hyperelastic composite materials. Comput Mech 52(5):1199–1219

    Article  MathSciNet  MATH  Google Scholar 

  22. Spahn J, Andrä H, Kabel M, Müller R (2014) A multiscale approach for modeling progressive damage of composite materials using fast Fourier transforms. Compu Methods Appl Mech Eng 268:871–883

    Article  MathSciNet  MATH  Google Scholar 

  23. Canova G, Wenk H, Molinari A (1992) Deformation modelling of multi-phase polycrystals: case of a quartz-mica aggregate. Acta Metall Mater 40(7):1519–1530

    Article  Google Scholar 

  24. Dvorak GJ (1992) Transformation field analysis of inelastic composite materials. Proc R Soc Lond A 437:311–327

    Article  MathSciNet  MATH  Google Scholar 

  25. Michel JC, Suquet P (2003) Nonuniform transformation field analysis. Int J Solids Struct 40:6937–6955

    Article  MathSciNet  MATH  Google Scholar 

  26. Roussette S, Michel J-C, Suquet P (2009) Nonuniform transformation field analysis of elastic–viscoplastic composites. Compos Sci Technol 69:22–27

    Article  Google Scholar 

  27. Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Annu Rev Fluid Mech 25:539–575

    Article  MathSciNet  Google Scholar 

  28. Yvonnet J, He QC (2007) The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains. J Comput Phys 223(1):341–368

    Article  MathSciNet  MATH  Google Scholar 

  29. Goury O, Amsallem D, Bordas SPA, Liu WK, Kerfriden P (2016) Automatised selection of load paths to construct reduced-order models in computational damage micromechanics: from dissipation-driven random selection to Bayesian optimization. Comput Mech 58(2):213–234

    Article  MathSciNet  MATH  Google Scholar 

  30. Néron D, Boucard P-A, Relun N (2015) Time-space PGD for the rapid solution of 3D nonlinear parametrized problems in the many-query context. Int J Numer Methods Eng 103:275–292

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu Z, Bessa M, Liu WK (2016) Self-consistent clustering analysis: an efficient multi-scale scheme for inelastic heterogeneous materials. Comput Methods Appl Mech Eng 306:319–341

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu Z, Fleming M, Liu WK (2018) Microstructural material database for self-consistent clustering analysis of elastoplastic strain softening materials. Comput Methods Appl Mech Eng 330:547–577

    Article  MathSciNet  MATH  Google Scholar 

  33. Li H, Kafka OL, Gao J, Cheng Yu, Nie Y, Zhang L, Tajdari M, Shan Tang X, Guo GL et al (2019) Clustering discretization methods for generation of material performance databases in machine learning and design optimization. Comput Mech 64(2):281–305

    Article  MathSciNet  MATH  Google Scholar 

  34. Tang S, Zhang L, Liu WK (2018) From virtual clustering analysis to self-consistent clustering analysis: a mathematical study. Comput Mech 62:1443–1460

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhu X, Zhang L, Tang S (2021) Adaptive selection of reference stiffness in virtual clustering analysis. Comput Methods Appl Mech Eng 376:113621

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang L, Tang S, Yu C, Zhu X, Liu WK (2019) Fast calculation of interaction tensors in clustering-based homogenization. Comput Mech 64:351–364

    Article  MathSciNet  MATH  Google Scholar 

  37. Wulfinghoff S, Cavaliere F, Reese S (2018) Model order reduction of nonlinear homogenization problems using a hashin-shtrikman type finite element method. Comput Methods Appl Mech Eng 330:149–179

    Article  MathSciNet  MATH  Google Scholar 

  38. Cavaliere F, Reese S, Wulfinghoff S (2019) Efficient two-scale simulations of engineering structures using the Hashin-Shtrikman type finite element method. Comput Mech 65:159–175

    Article  MathSciNet  MATH  Google Scholar 

  39. Schneider M (2019) On the mathematical foundations of the self-consistent clustering analysis for non-linear materials at small strains. Comput Methods Appl Mech Eng 354:783–801

    Article  MathSciNet  MATH  Google Scholar 

  40. Cheng GD, Li XK, Nie YH, Li HY (2019) FEM-Cluster based reduction method for efficient numerical prediction of effective properties of heterogeneous material in nonlinear range. Comput Methods Appl Mech Eng 348:157–184

    Article  MathSciNet  MATH  Google Scholar 

  41. Nie YH, Cheng GD, Li XK, Xu L, Li K (2019) Principle of cluster minimum complementary energy of FEM-cluster-based reduced order method: fast updating the interaction matrix and predicting effective nonlinear properties of heterogeneous material. Comput Mech 64:323–349

    Article  MathSciNet  MATH  Google Scholar 

  42. Nie YH, Li Z, Cheng GD (2021) Efficient prediction of the effective nonlinear properties of porous material by FEM-Cluster based Analysis (FCA). Comput Methods Appl Mech Eng 383:113921

    Article  MathSciNet  MATH  Google Scholar 

  43. Simo JC, Hughes TJR (2006) Computational inelasticity. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  44. Matsaglia G, Styan GPH (1974) Equalities and inequalities for ranks of matrices. Linear Multilinear Algebra 2:269–292

    Article  MathSciNet  Google Scholar 

  45. Yan J, Hu WB, Duan ZY (2015) Structure/material concrrent optimization of lattice materials based on extended multiscale finite element method. J Multiscale Comput Eng 13:73–90

    Article  Google Scholar 

Download references

Acknowledgements

The present work was supported by the National Natural Science Foundation of China (Grant Nos. 11602050, 11702053 and 11821202), the 111 Project (Grant No. B14013), and the Fundamental Research Funds for the Central Universities (Grant No. DUT2019TD37).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gengdong Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Nie, Y. & Cheng, G. Mathematical foundations of FEM-cluster based reduced order analysis method and a spectral analysis algorithm for improving the accuracy. Comput Mech 69, 1347–1363 (2022). https://doi.org/10.1007/s00466-022-02144-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-022-02144-3

Keywords

Navigation