Skip to main content
Log in

Bi-fidelity reduced polynomial chaos expansion for uncertainty quantification

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A ubiquitous challenge in design space exploration or uncertainty quantification of complex engineering problems is the minimization of computational cost. A useful tool to ease the burden of solving such systems is model reduction. This work considers a stochastic model reduction method (SMR), in the context of polynomial chaos expansions, where low-fidelity (LF) samples are leveraged to form a stochastic reduced basis. The reduced basis enables the construction of a bi-fidelity (BF) estimate of a quantity of interest from a small number of high-fidelity (HF) samples. A successful BF estimate approximates the quantity of interest with accuracy comparable to the HF model and computational expense close to the LF model. We develop new error bounds for the SMR approach and present a procedure to practically utilize these bounds in order to assess the appropriateness of a given pair of LF and HF models for BF estimation. The effectiveness of the SMR approach, and the utility of the error bound are presented in three numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analyzed during the current study will be uploaded to the GitHub page www.github.com/CU-UQ once the paper is published.

References

  1. Alnæs MS, Blechta J, Hake J, Johansson A, Kehlet B, Logg A, Richardson C, Ring J, Rognes ME, Wells GN (2015) The fenics project version 1.5. Arch Numer Softw 3(100)

  2. Berry AC (1941) The accuracy of the gaussian approximation to the sum of independent variates. Trans Am Math Soc 49(1):122–136

    Article  MathSciNet  MATH  Google Scholar 

  3. Blatman G, Sudret B (2010) An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis. Probab Eng Mech 25(2):183–197

    Article  Google Scholar 

  4. Blatman G, Sudret B (2011) Adaptive sparse polynomial chaos expansion based on least angle regression. J Comput Phys 230(6):2345–2367

    Article  MathSciNet  MATH  Google Scholar 

  5. Candès EJ, Wakin MB (2008) An introduction to compressive sampling. IEEE Signal Process Mag 25(2):21–30

    Article  Google Scholar 

  6. Chandrasheka P (2020) http://cpraveen.github.io

  7. Cheng H, Gimbutas Z, Martinsson PG, Rokhlin V (2005) On the compression of low rank matrices. SIAM J Sci Comput 26(4):1389–1404

    Article  MathSciNet  MATH  Google Scholar 

  8. Cliffe KA, Giles MB, Scheichl R, Teckentrup AL (2011) Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients. Comput Vis Sci 14(1):3

    Article  MathSciNet  MATH  Google Scholar 

  9. Constantine PG, Doostan A, Iaccarino G (2009) A hybrid collocation/galerkin scheme for convective heat transfer problems with stochastic boundary conditions. Int J Numer Methods Eng 80(6–7):868–880

    Article  MathSciNet  MATH  Google Scholar 

  10. De S, Britton J, Reynolds M, Skinner R, Jansen K, Doostan A (2020) On transfer learning of neural networks using bi-fidelity data for uncertainty propagation. Int J Uncertain Quant 10(6):543–573

    Article  MathSciNet  Google Scholar 

  11. Diaz P, Doostan A, Hampton J (2018) Sparse polynomial chaos expansions via compressed sensing and d-optimal design. Comput Methods Appl Mech Eng 336:640–666

    Article  MathSciNet  MATH  Google Scholar 

  12. Diskin B, Thomas J, Rumsey CL, Schwöppe A (2015) Grid convergence for turbulent flows, p 1746

  13. Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306

    Article  MathSciNet  MATH  Google Scholar 

  14. Doostan A, Owhadi H (2011) A non-adapted sparse approximation of PDEs with stochastic inputs. J Comput Phys 230(8):3015–3034

    Article  MathSciNet  MATH  Google Scholar 

  15. Doostan A, Ghanem RG, Red-Horse J (2007) Stochastic model reduction for chaos representations. Comput Methods Appl Mech Eng 196(37–40):3951–3966

    Article  MathSciNet  MATH  Google Scholar 

  16. Doostan A, Geraci G, Iaccarino G (2016) A bi-fidelity approach for uncertainty quantification of heat transfer in a rectangular ribbed channel. American Society of Mechanical Engineers, pp V02CT45A031–V02CT45A031

  17. Eldred M (2009) Recent advances in non-intrusive polynomial chaos and stochastic collocation methods for uncertainty analysis and design, p 2274

  18. Ernst OG, Mugler A, Starkloff HJ, Ullmann E (2012) On the convergence of generalized polynomial chaos expansions. ESAIM Math Model Numer Anal 46(2):317–339

    Article  MathSciNet  MATH  Google Scholar 

  19. Fairbanks HR, Doostan A, Ketelsen C, Iaccarino G (2017) A low-rank control variate for multilevel Monte Carlo simulation of high-dimensional uncertain systems. J Comput Phys 341:121–139

    Article  MathSciNet  MATH  Google Scholar 

  20. Fairbanks HR, Jofre L, Geraci G, Iaccarino G, Doostan A (2020) Bi-fidelity approximation for uncertainty quantification and sensitivity analysis of irradiated particle-laden turbulence. J Comput Phys 402:108996

    Article  MathSciNet  MATH  Google Scholar 

  21. Fernández-Godino MG, Park C, Kim NH, Haftka RT (2016) Review of multi-fidelity models. arXiv preprint arXiv:1609.07196

  22. Forrester AI, Sóbester A, Keane AJ (2007) Multi-fidelity optimization via surrogate modelling. Proc R Soc A Math Phys Eng Sci 463(2088):3251–3269

    MathSciNet  MATH  Google Scholar 

  23. Ghanem R, Saad G, Doostan A (2007) Efficient solution of stochastic systems: application to the embankment dam problem. Struct Saf 29(3):238–251

    Article  Google Scholar 

  24. Ghanem RG, Spanos PD (1991) Stochastic finite element method: response statistics. In: Stochastic finite elements: a spectral approach, pp 101–119. Springer

  25. Ghia U, Ghia KN, Shin C (1982) High-re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J Comput Phys 48(3):387–411

    Article  MATH  Google Scholar 

  26. Giles MB (2008) Multilevel Monte Carlo path simulation. Oper Res 56(3):607–617

    Article  MathSciNet  MATH  Google Scholar 

  27. Giles MB (2013) Multilevel Monte Carlo methods. In: Monte Carlo and quasi-Monte Carlo methods 2012, pp 83–103. Springer

  28. Gu M, Eisenstat SC (1996) Efficient algorithms for computing a strong rank-revealing qr factorization. SIAM J Sci Comput 17(4):848–869

    Article  MathSciNet  MATH  Google Scholar 

  29. Hampton J, Doostan A (2015a) Coherence motivated sampling and convergence analysis of least squares polynomial chaos regression. Comput Methods Appl Mech Eng 290:73–97

    Article  MathSciNet  MATH  Google Scholar 

  30. Hampton J, Doostan A (2015b) Compressive sampling of polynomial chaos expansions: convergence analysis and sampling strategies. J Comput Phys 280:363–386

    Article  MathSciNet  MATH  Google Scholar 

  31. Hampton J, Fairbanks HR, Narayan A, Doostan A (2018) Practical error bounds for a non-intrusive bi-fidelity approach to parametric/stochastic model reduction. J Comput Phys 368:315–332

    Article  MathSciNet  MATH  Google Scholar 

  32. Hill PG, Peterson CR (1992) Mechanics and thermodynamics of propulsion. Addison-Wesley Publishing Co, Reading

    Google Scholar 

  33. Kennedy MC, O’Hagan A (2000) Predicting the output from a complex computer code when fast approximations are available. Biometrika 87(1):1–13

  34. Kleiber W, Sain SR, Heaton MJ, Wiltberger M, Reese CS, Bingham D et al (2013) Parameter tuning for a multi-fidelity dynamical model of the magnetosphere. Ann Appl Stat 7(3):1286–1310

    Article  MathSciNet  MATH  Google Scholar 

  35. Laurenceau J, Sagaut P (2008) Building efficient response surfaces of aerodynamic functions with kriging and cokriging. AIAA J 46(2):498–507

    Article  Google Scholar 

  36. Le Gratiet L, Cannamela C (2015) Cokriging-based sequential design strategies using fast cross-validation techniques for multi-fidelity computer codes. Technometrics 57(3):418–427

    Article  MathSciNet  Google Scholar 

  37. Le Gratiet L, Garnier J (2014) Recursive co-kriging model for design of computer experiments with multiple levels of fidelity. Int J Uncertain Quant 4(5):365–386

    Article  MathSciNet  Google Scholar 

  38. Le Maître O, Knio OM (2010) Spectral methods for uncertainty quantification: with applications to computational fluid dynamics. Springer, Berlin

    Book  MATH  Google Scholar 

  39. Lyall ME, Thrift AA, Thole KA, Kohli A (2011) Heat transfer from low aspect ratio pin fins. J Turbomach 133(1):011001

    Article  Google Scholar 

  40. Martinsson R, Tygert M (2011) A randomized algorithm for the decomposition of matrices. Appl Comput Harmon Anal 30(1):47–68

    Article  MathSciNet  MATH  Google Scholar 

  41. Mathelin L, Gallivan K (2012) A compressed sensing approach for partial differential equations with random input data. Commun Comput Phys 12(4):919–954

    Article  MathSciNet  MATH  Google Scholar 

  42. Narayan A, Gittelson C, Xiu D (2014) A stochastic collocation algorithm with multifidelity models. SIAM J Sci Comput 36(2):A495–A521

    Article  MathSciNet  MATH  Google Scholar 

  43. Ng LWT, Eldred M (2012) Multifidelity uncertainty quantification using non-intrusive polynomial chaos and stochastic collocation, p 1852

  44. Padron AS, Alonso JJ, Eldred MS (2016) Multi-fidelity methods in aerodynamic robust optimization, p 0680

  45. Palar PS, Tsuchiya T, Parks G (2015) Decomposition-based evolutionary aerodynamic robust optimization with multi-fidelity point collocation non-intrusive polynomial chaos, p 1377

  46. Parussini L, Venturi D, Perdikaris P, Karniadakis GE (2017) Multi-fidelity gaussian process regression for prediction of random fields. J Comput Phys 336:36–50

    Article  MathSciNet  MATH  Google Scholar 

  47. Peherstorfer B, Willcox K, Gunzburger M (2018) Survey of multifidelity methods in uncertainty propagation, inference, and optimization. Siam Rev 60(3):550–591

    Article  MathSciNet  MATH  Google Scholar 

  48. Peng J, Hampton J, Doostan A (2014) A weighted \(\ell _1\)-minimization approach for sparse polynomial chaos expansions. J Comput Phys 267:92–111

    Article  MathSciNet  MATH  Google Scholar 

  49. Perdikaris P, Venturi D, Royset JO, Karniadakis GE (2015) Multi-fidelity modelling via recursive co-kriging and Gaussian–Markov random fields

  50. Perdikaris P, Venturi D, Karniadakis GE (2016) Multifidelity information fusion algorithms for high-dimensional systems and massive data sets. SIAM J Sci Comput 38(4):B521–B538

    Article  MathSciNet  MATH  Google Scholar 

  51. Pope SB (2001) Turbulent flows

  52. Raisee M, Kumar D, Lacor C (2015) A non-intrusive model reduction approach for polynomial chaos expansion using proper orthogonal decomposition. Int J Numer Methods Eng 103(4):293–312

    Article  MathSciNet  MATH  Google Scholar 

  53. Shevtsova I (2011) On the absolute constants in the Berry–Esseen type inequalities for identically distributed summands. arXiv preprint arXiv:1111.6554

  54. Skinner RW, Doostan A, Peters EL, Evans JA, Jansen KE (2019) Reduced-basis multifidelity approach for efficient parametric study of naca airfoils. AIAA J 57(4):1481–1491

    Article  Google Scholar 

  55. Spalart P, Allmaras S (1992) A one-equation turbulence model for aerodynamic flows, p 439

  56. Whiting CH, Jansen KE (2001) A stabilized finite element method for the incompressible Navier–Stokes equations using a hierarchical basis. Int J Numer Methods Fluids 35(1):93–116

    Article  MATH  Google Scholar 

  57. Xiu D (2010) Numerical methods for stochastic computations: a spectral method approach. Princeton University Press, Princeton

    Book  MATH  Google Scholar 

  58. Xiu D, Karniadakis GE (2002) The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 24(2):619–644

    Article  MathSciNet  MATH  Google Scholar 

  59. Yan L, Guo L, Xiu D (2012) Stochastic collocation algorithms using \(\ell _1\)-minimization. Int J Uncertain Quant 2(3):279–293

    Article  Google Scholar 

  60. Yang X, Karniadakis GE (2013) Reweighted \(\ell _1\)-minimization method for stochastic elliptic differential equations. J Comput Phys 248:87–108

    Article  MATH  Google Scholar 

  61. Zhu X, Narayan A, Xiu D (2014) Computational aspects of stochastic collocation with multifidelity models. SIAM/ASA J Uncertain Quant 2(1):444–463

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of FN was supported by NSF Grants 1740330 and 2028032. JH has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 712949 (TECNIOspring PLUS) and from the Agency for Business Competitiveness of the Government of Catalonia. The work of AD was also supported by the AFOSR Grant FA9550-20-1-0138 and NSF Grant 1454601.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Doostan.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Code availability

The code used in this study will be made available once the paper is published at the GitHub page www.github.com/CU-UQ.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Appendix

A Appendix

\(\varvec{\varXi }\) :

Vector of random variables

\(\varvec{{u}}\) :

Vector valued QoI

\(\varvec{{c}}_j\) :

PC expansion coefficients

\(\psi _{j}\) :

Polynomial basis functions

\(\varvec{\delta }_P\) :

PC expansion truncation error

p :

PC total order

\(\varvec{{C}}\) :

Matrix of PC coefficients

\(\varvec{\xi }_i\) :

ith realization of random variable vector \(\varvec{\varXi }\)

\(\varvec{{U}}\) :

Matrix of QoI \(\varvec{{u}}\) samples

N :

Number of samples in \(\varvec{{U}}\), \(\varvec{{L}}\) and \(\varvec{{H}}\)

\(\varvec{\varPsi }\) :

Measurement matrix for PC regression

\(\varvec{{u}}^L\) :

LF QoI

\(\varvec{{u}}^H\) :

HF QoI

m :

LF QoI dimension

M :

HF QoI dimension

\(\varvec{{L}}\) :

Matrix of LF data

\(\varvec{{H}}\) :

Matrix of HF data

\(\varvec{{c}}_j^L\) :

PC expansion coefficients from LF data

\(\eta _{i}\) :

Reduced basis functions

r :

Number of basis functions in SMR reduced basis; number of HF samples in MID

\(\varvec{{c}}_{j}^B\) :

BF coefficients

\({\varvec{\delta }}_{r}\) :

Total error in BF estimate

\(\varvec{{u}}^B\) :

SMR BF QoI estimate

\(\varvec{{C}}^B\) :

SMR Matrix of BF coefficients

\(\varvec{{H}}_n\) :

SMR Limited number of n HF samples

\(\varvec{\eta }_n\) :

Reduced basis measurement matrix for n samples

n :

Number of HF samples in SMR estimate

\(\varvec{\eta }_N\) :

Reduced basis measurement matrix for N samples

\({\widehat{\varvec{{H}}}}\) :

SMR BF estimate of \(\varvec{{H}}\)

\({\bar{\varvec{{C}}}}^L\) :

Matrix of MID interpolation coefficients

\({\bar{\varvec{{L}}}}^L\) :

MID BF estimate of \(\varvec{{L}}\)

\(\varvec{{H}}_r\) :

MID limited number of r HF samples

\({\bar{\varvec{{H}}}}^L\) :

MID BF estimate of \(\varvec{{H}}\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Newberry, F., Hampton, J., Jansen, K. et al. Bi-fidelity reduced polynomial chaos expansion for uncertainty quantification. Comput Mech 69, 405–424 (2022). https://doi.org/10.1007/s00466-021-02096-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-021-02096-0

Keywords

Navigation