Skip to main content
Log in

Computational stochastic homogenization of heterogeneous media from an elasticity random field having an uncertain spectral measure

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper presents the computational stochastic homogenization of a heterogeneous 3D-linear anisotropic elastic microstructure that cannot be described in terms of constituents at microscale, as live tissues. The random apparent elasticity field at mesoscale is then modeled in a class of non-Gaussian positive-definite tensor-valued homogeneous random fields. We present an extension of previous works consisting of a novel probabilistic model to take into account uncertainties in the spectral measure of the random apparent elasticity field. A probabilistic analysis of the random effective elasticity tensor at macroscale is performed as a function of the level of spectrum uncertainties, which allows for studying the scale separation and the representative volume element size in a robust probabilistic framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Kröner E (1971) Statistical continuum mechanics. Springer, Berlin

    Book  Google Scholar 

  2. Kröner E (1977) Bounds for effective elastic moduli of disordered materials. J Mech Phys Solids 25(2):137–155. https://doi.org/10.1016/0022-5096(77)90009-6

    Article  MATH  Google Scholar 

  3. Nemat-Nasser S, Hori M (1999) Micromechanics: overall properties of heterogeneous materials, Second revised. Elsevier, Amsterdam

    MATH  Google Scholar 

  4. Milton GW (2002) The theory of composites. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511613357

    Book  MATH  Google Scholar 

  5. Torquato S (2002) Random heterogeneous materials. Microstructure and macroscopic properties. Springer, New York. https://doi.org/10.1007/978-1-4757-6355-3

    Book  MATH  Google Scholar 

  6. Sánchez-Palencia E (1980) Non-homogeneous media and vibration theory, vol 127. Lecture notes in physics. Springer, Berlin

    MATH  Google Scholar 

  7. Forest S (2002) Homogenization methods and mechanics of generalized continua—part 2. Theor Appl Mech 28–29:113–143

    Article  Google Scholar 

  8. Zaoui A (2002) Continuum micromechanics: survey. J Eng Mech 128(8):808–816. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:8(808)

    Article  Google Scholar 

  9. Bourgeat A, Piatnitski A (2004) Approximations of effective coefficients in stochastic homogenization. Ann Inst Henri Poincare (B) Probab Stat 40(2):153–165. https://doi.org/10.1016/j.anihpb.2003.07.003

    Article  MathSciNet  MATH  Google Scholar 

  10. Yvonnet J, He Q-C, Toulemonde C (2008) Numerical modelling of the effective conductivities of composites with arbitrarily shaped inclusions and highly conducting interface. Compos Sci Technol 68(13):2818–2825. https://doi.org/10.1016/j.compscitech.2008.06.008

    Article  Google Scholar 

  11. Suquet P (2014) Continuum micromechanics. Springer, Wien

    MATH  Google Scholar 

  12. Papanicolaou G, Varadhan S (1981) Boundary value problems with rapidly oscillating random coefficients. North Holland, Amsterdam

    MATH  Google Scholar 

  13. Torquato S, Stell G (1985) Microstructure of two-phase random media. V. The n-point matrix probability functions for impenetrable spheres. J Chem Phys 82(2):980–987. https://doi.org/10.1063/1.448475

    Article  Google Scholar 

  14. Nguetseng G (1989) A general convergence result for a functional related to the theory of homogenization. SIAM J Math Anal 20(3):608–623. https://doi.org/10.1137/0520043

    Article  MathSciNet  MATH  Google Scholar 

  15. Allaire G (1992) Homogenization and two-scale convergence. SIAM J Math Anal 23(6):1482–1518. https://doi.org/10.1137/0523084

    Article  MathSciNet  MATH  Google Scholar 

  16. Sab K (1992) On the homogenization and the simulation of random materials. Eur J Mech A Solids 11(5):585–607

    MathSciNet  MATH  Google Scholar 

  17. Andrews KT, Wright S (1998) Stochastic homogenization of elliptic boundary-value problems with Lp-data. Asymptot Anal 17(3):165–184

    MathSciNet  MATH  Google Scholar 

  18. Ostoja-Starzewski M (1998) Random field models of heterogeneous materials. Int J Solids Struct 35(19):2429–2455. https://doi.org/10.1016/S0020-7683(97)00144-3

    Article  MATH  Google Scholar 

  19. Jikov VV, Kozlov SM, Oleinik OA (2012) Homogenization of differential operators and integral functionals. Springer, Berlin. https://doi.org/10.1007/978-3-642-84659-5

    Book  Google Scholar 

  20. Liu WK, McVeigh C (2008) Predictive multiscale theory for design of heterogeneous materials. Comput Mech 42(2):147–170. https://doi.org/10.1007/s00466-007-0176-8

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu WK, Siad L, Tian R, Lee S, Lee D, Yin X, Chen W, Chan S, Olson GB, Lindgen L-E et al (2009) Complexity science of multiscale materials via stochastic computations. Int J Numer Methods Eng 80(6–7):932–978. https://doi.org/10.1002/nme.2578

    Article  MATH  Google Scholar 

  22. Liu WK, Qian D, Gonella S, Li S, Chen W, Chirputkar S (2010) Multiscale methods for mechanical science of complex materials: bridging from quantum to stochastic multiresolution continuum. Int J Numer Methods Eng 83(8–9):1039–1080. https://doi.org/10.1002/nme.2915

    Article  MATH  Google Scholar 

  23. Guilleminot J, Noshadravanb A, Soize C, Ghanem R (2011) A probabilistic model for bounded elasticity tensor random fields with application to polycrystalline microstructures. Comput Methods Appl Mech Eng 200(17–20):1637–1648. https://doi.org/10.1016/j.cma.2011.01.016

    Article  MathSciNet  MATH  Google Scholar 

  24. Greene MS, Liu Y, Chen W, Liu WK (2011) Computational uncertainty analysis in multiresolution materials via stochastic constitutive theory. Comput Methods Appl Mech Eng 200(1–4):309–325. https://doi.org/10.1016/j.cma.2010.08.013

    Article  MathSciNet  MATH  Google Scholar 

  25. Le T-T, Guilleminot J, Soize C (2016) Stochastic continuum modeling of random interphases from atomistic simulations. Application to a polymer nanocomposite. Comput Methods Appl Mech Eng 303:430–449. https://doi.org/10.1016/j.cma.2015.10.006

    Article  MathSciNet  MATH  Google Scholar 

  26. Yu C, Kafka OL, Liu WK (2021) Multiresolution clustering analysis for efficient modeling of hierarchical material systems. Comput Mech. https://doi.org/10.1007/s00466-021-01982-x

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu Z, Moore JA, Aldousari SM, Hedia HS, Asiri SA, Liu WK (2015) A statistical descriptor based volume-integral micromechanics model of heterogeneous material with arbitrary inclusion shape. Comput Mech 55(5):963–981. https://doi.org/10.1007/s00466-015-1145-2

    Article  MathSciNet  MATH  Google Scholar 

  28. Bessa MA, Bostanabad R, Liu Z, Hu A, Apley DW, Brinson C, Chen W, Liu WK (2017) A framework for data-driven analysis of materials under uncertainty: countering the curse of dimensionality. Comput Methods Appl Mech Eng 320:633–667. https://doi.org/10.1016/j.cma.2017.03.037

    Article  MathSciNet  MATH  Google Scholar 

  29. Soize C (2018) Design optimization under uncertainties of a mesoscale implant in biological tissues using a probabilistic learning algorithm. Comput Mech 62(3):477–497. https://doi.org/10.1007/s00466-017-1509-x

    Article  MathSciNet  MATH  Google Scholar 

  30. Yang H, Guo X, Tang S, Liu WK (2019) Derivation of heterogeneous material laws via data-driven principal component expansions. Comput Mech 64(2):365–379. https://doi.org/10.1007/s00466-019-01728-w

    Article  MathSciNet  MATH  Google Scholar 

  31. Ghanem R, Soize C, Mehrez L, Aitharaju V (2020) Probabilistic learning and updating of a digital twin for composite material systems. Int J Numer Methods Eng. https://doi.org/10.1002/nme.6430

    Article  Google Scholar 

  32. Soize C, Ghanem R, Desceliers C (2020) Sampling of Bayesian posteriors with a non-Gaussian probabilistic learning on manifolds from a small dataset. Stat Comput 30(5):1433–1457. https://doi.org/10.1007/s11222-020-09954-6

    Article  MathSciNet  MATH  Google Scholar 

  33. Pled F, Desceliers C, Zhang T (2021) A robust solution of a statistical inverse problem in multiscale computational mechanics using an artificial neural network. Comput Methods Appl Mech Eng 373:113540. https://doi.org/10.1016/j.cma.2020.113540

    Article  MathSciNet  MATH  Google Scholar 

  34. Drugan WJ, Willis JR (1996) A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites. J Mech Phys Solids 44(4):497–524. https://doi.org/10.1016/0022-5096(96)00007-5

    Article  MathSciNet  MATH  Google Scholar 

  35. Ren Z-Y, Zheng Q-S (2004) Effects of grain sizes, shapes, and distribution on minimum sizes of representative volume elements of cubic polycrystals. Mech Mater 36(12):1217–1229. https://doi.org/10.1016/j.mechmat.2003.11.002

    Article  Google Scholar 

  36. Sab K, Nedjar B (2005) Periodization of random media and representative volume element size for linear composites. Comptes Rendus Mécanique 333(2):187–195. https://doi.org/10.1016/j.crme.2004.10.003

    Article  MATH  Google Scholar 

  37. Ostoja-Starzewski M (2006) Material spatial randomness: from statistical to representative volume element. Probab Eng Mech 21(2):112–132. https://doi.org/10.1016/j.probengmech.2005.07.007

    Article  Google Scholar 

  38. Ostoja-Starzewski M, Du X, Khisaeva Z, Li W (2007) Comparisons of the size of the representative volume element in elastic, plastic, thermoelastic, and permeable random microstructures. Int J Multiscale Comput Eng 5(2):73–82. https://doi.org/10.1615/IntJMultCompEng.v5.i2.10

    Article  Google Scholar 

  39. Yin X, Chen W, To A, McVeigh C, Liu WK (2008) Statistical volume element method for predicting microstructure-constitutive property relations. Comput Methods Appl Mech Eng 197(43–44):3516–3529. https://doi.org/10.1016/j.cma.2008.01.008

    Article  MathSciNet  MATH  Google Scholar 

  40. Soize C (2008) Tensor-valued random fields for meso-scale stochastic model of anisotropic elastic microstructure and probabilistic analysis of representative volume element size. Probab Eng Mech 23(2–3):307–323. https://doi.org/10.1016/j.probengmech.2007.12.019

    Article  Google Scholar 

  41. Guilleminot J, Soize C, Kondo D (2009) Mesoscale probabilistic models for the elasticity tensor of fiber reinforced composites: experimental identification and numerical aspects. Mech Mater 41(12):1309–1322. https://doi.org/10.1016/j.mechmat.2009.08.004

    Article  Google Scholar 

  42. Desceliers C, Soize C, Grimal Q, Talmant M, Naili S (2009) Determination of the random anisotropic elasticity layer using transient wave propagation in a fluid–solid multilayer: model and experiments. J Acoust Soc Am 125(4):2027–2034. https://asa.scitation.org/doi/10.1121/1.3087428

    Article  Google Scholar 

  43. Desceliers C, Soize C, Naili S, Haïat G (2012) Probabilistic model of the human cortical bone with mechanical alterations in ultrasonic range. Mech Syst Signal Process 32:170–177. https://doi.org/10.1016/j.ymssp.2012.03.008

    Article  Google Scholar 

  44. Nguyen M-T, Desceliers C, Soize C, Allain J-M, Gharbi H (2015) Multiscale identification of the random elasticity field at mesoscale of a heterogeneous microstructure using multiscale experimental observations. Int J Multiscale Comput Eng. https://doi.org/10.1615/IntJMultCompEng.2015011435

    Article  Google Scholar 

  45. Nguyen M-T, Allain J-M, Gharbi H, Desceliers C, Soize C (2016) Experimental multiscale measurements for the mechanical identification of a cortical bone by digital image correlation. J Mech Behav Biomed Mater 63:125–133. https://doi.org/10.1016/j.jmbbm.2016.06.011

    Article  Google Scholar 

  46. Zhang T, Pled F, Desceliers C (2020) Robust multiscale identification of apparent elastic properties at mesoscale for random heterogeneous materials with multiscale field measurements. Materials 13(12):2826. https://doi.org/10.3390/ma13122826

    Article  Google Scholar 

  47. Nouy A, Soize C (2014) Random field representations for stochastic elliptic boundary value problems and statistical inverse problems. Eur J Appl Math 25(3):339–373. https://doi.org/10.1017/S0956792514000072

    Article  MathSciNet  MATH  Google Scholar 

  48. Soize C (2017) Uncertainty quantification. Springer, New York. https://doi.org/10.1007/978-3-319-54339-0

    Book  MATH  Google Scholar 

  49. Yadrenko MI (1983) Spectral theory of random fields. Optimization Software, New York

    MATH  Google Scholar 

  50. Rozanov Y (1988) Random fields and stochastic partial differential equations. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  51. Adler R (2010) The geometry of random fields. SIAM, Philadelphia

    Book  Google Scholar 

  52. Vanmarcke E (2010) Random fields: analysis and synthesis. World Scientific, Singapore

    Book  Google Scholar 

  53. Rosenblatt M (2012) Stationary sequences and random fields. Springer, Berlin

    MATH  Google Scholar 

  54. Malyarenko A, Ostoja-Starzewski M (2018) Tensor-valued random fields for continuum physics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  55. Guilleminot J, Soize C (2020) Non-Gaussian random fields in multiscale mechanics of heterogeneous materials. In: Altenbach H, Ochsner A (eds) Encyclopedia of continuum mechanics. Springer, Berlin, pp 1826–1834. https://doi.org/10.1007/978-3-662-55771-6_68

    Chapter  Google Scholar 

  56. Soize C (2006) Non Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators. Comput Methods Appl Mech Eng 195(1–3):26–64. https://doi.org/10.1016/j.cma.2004.12.014

    Article  MathSciNet  MATH  Google Scholar 

  57. Guilleminot J, Soize C (2013) On the statistical dependence for the components of random elasticity tensors exhibiting material symmetry properties. J Elast 111(2):109–130. https://doi.org/10.1007/s10659-012-9396-z

    Article  MathSciNet  MATH  Google Scholar 

  58. Guilleminot J, Soize C (2013) Stochastic model and generator for random fields with symmetry properties: application to the mesoscopic modeling of elastic random media. Multiscale Model Simul (A SIAM Interdiscip J) 11(3):840–870. https://doi.org/10.1137/120898346

    Article  MathSciNet  MATH  Google Scholar 

  59. Malyarenko A, Ostoja-Starzewski M (2017) A random field formulation of Hooke’s law in all elasticity classes. J Elast 127(2):269–302. https://doi.org/10.1007/s10659-016-9613-2

    Article  MathSciNet  MATH  Google Scholar 

  60. Cowin SC, Mehrabadi MM (1987) On the identification of material symmetry for anisotropic elastic materials. Q J Mech Appl Math 40(4):451–476. https://doi.org/10.1093/qjmam/40.4.451

  61. Soize C (2017) Random vectors and random fields in high dimension: parametric model-based representation, identification from data, and inverse problems. In: Ghanem R, Higdon D, Owhadi H (eds) Handbook of uncertainty quantification, vol 2. Springer, Cham, pp 883–936. https://doi.org/10.1007/978-3-319-11259-6_30-110.1007/978-3-319-11259-6_30-110.1007/978-3-319-11259-6_30-1

  62. Soize C (2021) Stochastic elliptic operators defined by non-Gaussian random fields with uncertain spectrum. Am Math Soc J Theory Probab Math Stat. Submitted. arXiv:2106.07706 [math.PR], 14 June 2021

  63. Bornert M, Bretheau T, Gilormini P (2008) Homogenization in mechanics of materials. ISTE Ltd and Wiley, New York

    MATH  Google Scholar 

  64. Poirion F, Soize C (1995) Numerical methods and mathematical aspects for simulation of homogeneous and non homogeneous gaussian vector fields. In: Krée P, Wedig W (eds) Probabilistic methods in applied physics. Springer, Berlin, pp 17–53. https://doi.org/10.1007/3-540-60214-3-50

    Chapter  MATH  Google Scholar 

  65. Krée P, Soize C (1986) Mathematics of random phenomena. Reidel Pub, Co, Dordrecht ((first published by Bordas in 1983 and also published by Springer Science & Business Media in 2012))

    Book  Google Scholar 

  66. Bowman A, Azzalini A (1997) Applied smoothing techniques for data analysis: the kernel approach with S-plus illustrations, vol 18. Clarendon Press, Oxford University Press, New York. https://doi.org/10.1007/s001800000033

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Soize.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soize, C. Computational stochastic homogenization of heterogeneous media from an elasticity random field having an uncertain spectral measure. Comput Mech 68, 1003–1021 (2021). https://doi.org/10.1007/s00466-021-02056-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-021-02056-8

Keywords

Navigation