Skip to main content
Log in

A scale-dependent finite difference approximation for time fractional differential equation

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This study proposes a scale-dependent finite difference method (S-FDM) to approximate the time fractional differential equations (FDEs), using Hausdroff metric to conveniently link the order of the time fractional derivative (α) and the non-uniform time intervals. The S-FDM is unconditional stable and exhibits a convergence rate on the order of 2-α. Numerical tests show that the S-FDM is superior to the standard methods with either uniform or non-uniform time steps in computing time or cost, accuracy, and convergence rate, especially for a large time range. Hence, although many numerical schemes have been developed in the last decades for various FDEs, the unique S-FDM proposed in this study fits the requirement of calculating anomalous transport in natural systems involving a large spatiotemporal scale, which might be the future direction to extend the application of FDEs especially in Earth sciences, the ideal testbed for FDEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, New York

    MATH  Google Scholar 

  2. Samko SG, Kilbas AA, Marichev OI (1993) Fractional integrals and derivatives. Theory and applications. Gordon and Breach, Yverdon

    MATH  Google Scholar 

  3. Baeumer B, Benson DA, Meerschaert MM, Wheatcraft SW (2001) Subordinated advection–dispersion equation for contaminant transport. Water Resour Res 37(6):1543–1550

    Article  Google Scholar 

  4. Sun HG, Chen D, Zhang Y, Chen L (2015) Understanding partial bed-load transport: experiments and stochastic model analysis. J Hydrol 521:196–204

    Article  Google Scholar 

  5. Chen W (2006) Time–space fabric underlying anomalous diffusion. Chaos Solitons Fract 28(4):923–929

    Article  MATH  Google Scholar 

  6. Chen W, Sun H, Zhang X, Korošak D (2010) Anomalous diffusion modeling by fractal and fractional derivatives. Comput Math Appl 59(5):1754–1758

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen W, Wang F, Zheng B, Cai W (2017) Non-Euclidean distance fundamental solution of Hausdorff derivative partial differential equations. Eng Anal Bound Elem 84:213–219

    Article  MathSciNet  MATH  Google Scholar 

  8. Wu GC, Baleanu D (2014) Chaos synchronization of the discrete fractional logistic map. Signal Process 102:96–99

    Article  Google Scholar 

  9. Wang H, Wang K (2010) Uniform estimates of an Eulerian–Lagrangian method for time-dependent convection–diffusion equations in multiple space dimensions. SIAM J Numer Anal 48(4):1444–1473

    Article  MathSciNet  MATH  Google Scholar 

  10. Bai J, Feng XC (2007) Fractional-order anisotropic diffusion for image denoising. IEEE Trans Image Process 16(10):2492–2502

    Article  MathSciNet  Google Scholar 

  11. Scalas E, Gorenflo R, Mainardi F (2000) Fractional calculus and continuous-time finance. Physica A 284(1):376–384

    Article  MathSciNet  Google Scholar 

  12. Fu ZJ, Chen W, Ling L (2015) Method of approximate particular solutions for constant-and variable-order fractional diffusion models. Eng Anal Bound Elem 57:37–46

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhang Y, Sun HG, Stowell HH, Zayernouri M, Hansen SE (2017) A review of applications of fractional calculus in Earth system dynamics. Chaos Solitons Fract 102:29–46

    Article  MathSciNet  MATH  Google Scholar 

  14. Baleanu D, Diethelm K, Scalas E, Trujillo JJ (2016) Fractional calculus: models and numerical methods, vol 5. World Scientific, Singapore

    Book  MATH  Google Scholar 

  15. Jiang X, Qi H (2012) Thermal wave model of bioheat transfer with modified Riemann–Liouville fractional derivative. J Phys A Math Theor 45(48):485101

    Article  MathSciNet  MATH  Google Scholar 

  16. Baleanu D, Wu GC, Bai YR, Chen FL (2017) Stability analysis of Caputo-like discrete fractional systems. Commun Nonlinear Sci 48:520–530

    Article  MathSciNet  Google Scholar 

  17. Liu F, Zhuang P, Anh V, Turner I, Burrage K (2007) Stability and convergence of the difference methods for the space–time fractional advection–diffusion equation. Appl Math Comput 191(1):12–20

    MathSciNet  MATH  Google Scholar 

  18. Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339(1):1–77

    Article  MathSciNet  MATH  Google Scholar 

  19. Xu WX, Sun HG, Chen W, Chen HS (2018) Transport properties of concrete-like granular materials interacted by their microstructures and particle components. Int J Mod Phys B 32(18):1840011

  20. Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol 198. Academic Press, London

    MATH  Google Scholar 

  21. Tadjeran C, Meerschaert MM, Scheffler HP (2006) A second-order accurate numerical approximation for the fractional diffusion equation. J Comput Phys 213(1):205–213

    Article  MathSciNet  MATH  Google Scholar 

  22. Diethelm K, Ford J (2002) Numerical solution of the Bagley–Torvik equation. BIT 42(3):490–507

    MathSciNet  MATH  Google Scholar 

  23. Tang SQ, Ying YP, Lian YP, Lin S, Yang YB, Wagner GJ, Liu WK (2016) Differential operator multiplication method for fractional differential equations. Comput Mech 58:879–888

    Article  MathSciNet  MATH  Google Scholar 

  24. Du N, Wang H (2015) A fast finite element method for space-fractional dispersion equations on bounded domains in R2. SIAM J Sci Comput 37(3):A1614–A1635

    Article  MATH  Google Scholar 

  25. Fu ZJ, Chen W, Yang HT (2013) Boundary particle method for Laplace transformed time fractional diffusion equations. J Comput Phys 235:52–66

    Article  MathSciNet  MATH  Google Scholar 

  26. Jiang H, Liu F, Turner I, Burrage K (2012) Analytical solutions for the multi-term time–space Caputo-Riesz fractional advection–diffusion equations on a finite domain. J Math Anal Appl 389(2):1117–1127

    Article  MathSciNet  MATH  Google Scholar 

  27. Sun HG, Liu XT, Zhang Y, Pang G, Garrard R (2017) A fast semi-discrete Kansa method to solve the two-dimensional spatiotemporal fractional diffusion equation. J Comput Phys 345:74–90

    Article  MathSciNet  MATH  Google Scholar 

  28. Li JP, Chen W, Gu Y (2017) Error bounds of singular boundary method for potential problems. Numer Methods Part Differ Equ 33(6):1987–2004

    Article  MathSciNet  MATH  Google Scholar 

  29. Sun HG, Zhang Y, Baleanu D, Chen W, Chen YQ (2018) A new collection of real world applications of fractional calculus in science and engineering. Commun Nonlinear Sci 64:213–231

    Article  Google Scholar 

  30. Du R, Hao Z, Sun Z (2016) Lubich second-order methods for distributed-order time-fractional differential equations with smooth solutions. East Asian J Appl Math 6(2):131–151

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang FJ, Chen W, Zhang CZ, Lin J (2017) Analytical evaluation of the origin intensity factor of time-dependent diffusion fundamental solution for a matrix-free singular boundary method formulation. Appl Math Model 49:647–662

    Article  MathSciNet  Google Scholar 

  32. Zhang Y, Benson DA, Reeves DM (2009) Time and space nonlocalities underlying fractional-derivative models: distinction and literature review of field applications. Adv Water Resour 32(4):561–581

    Article  Google Scholar 

  33. Sun HG, Chen W, Chen YQ (2009) Variable-order fractional differential operators in anomalous diffusion modeling. Physica A 388(21):4586–4592

    Article  Google Scholar 

  34. Lin X, Ng MK, Sun HW (2017) A multigrid method for linear systems arising from time-dependent two-dimensional space-fractional diffusion equations. J Comput Phys 336:69–86

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang Y, Meerschaert MM, Baeumer B, LaBolle EM (2015) Modeling mixed retention and early arrivals in multidimensional heterogeneous media using an explicit Lagrangian scheme. Water Resour Res 51(8):6311–6337

    Article  Google Scholar 

  36. Agrawal OP (2009) A numerical scheme for initial compliance and creep response of a system. Mech Res Commun 36(4):444–451

    Article  MATH  Google Scholar 

  37. Ford NJ, Simpson AC (2001) The numerical solution of fractional differential equations: speed versus accuracy. Numer Algorithms 26:333–346

    Article  MathSciNet  MATH  Google Scholar 

  38. Sun HG, Chen W, Li C, Chen YQ (2010) Fractional differential models for anomalous diffusion. Physica A 389(14):2719–2724

    Article  Google Scholar 

  39. Ying YP, Lian YP, Tang SQ, Liu WK (2017) High-order central scheme for Caputo fractional derivative. Comput Methods Appl Mech Eng 317:42–54

    Article  MathSciNet  Google Scholar 

  40. Pang G, Chen W, Fu Z (2015) Space-fractional advection–dispersion equations by the Kansa method. J Comput Phys 293:280–296

    Article  MathSciNet  MATH  Google Scholar 

  41. Lin Y, Xu C (2007) Finite difference/spectral approximations for the time-fractional diffusion equation. J Comput Phys 225(2):1533–1552

    Article  MathSciNet  MATH  Google Scholar 

  42. Zeng S, Baleanu D, Bai Y, Wu G (2017) Fractional differential equations of Caputo–Katugampola type and numerical solutions. Appl Math Comput 315:549–554

    MathSciNet  MATH  Google Scholar 

  43. Pang HK, Sun HW (2016) Fast numerical contour integral method for fractional diffusion equations. J Sci Comput 66(1):41–66

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhao X, Hu X, Cai W, Karniadakis GE (2017) Adaptive finite element method for fractional differential equations using hierarchical matrices. Comput Methods Appl Mech Eng 325:56–76

    Article  MathSciNet  Google Scholar 

  45. Luan S, Lian YP, Ying YP, Tang SQ, Wagner GJ, Liu WK (2017) An enriched finite element method to fractional advection diffusion equations. Comput Mech 60(2):181–201

    Article  MathSciNet  MATH  Google Scholar 

  46. Lian YP, Ying YP, Tang SQ, Lin S, Wagner GJ, Liu WK (2016) A Petrov–Galerkin finite element method for the fractional advection–diffusion equation. Comput Methods Appl Mech Eng 309:388–410

    Article  MathSciNet  Google Scholar 

  47. Zhang T, Li SS (2017) A posteriori error estimates of finite element method for the time-dependent Navier–Stokes equations. Appl Math Comput 315:13–26

    MathSciNet  MATH  Google Scholar 

  48. Mustapha K (2011) An implicit finite-difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements. IMA J Numer Anal 31(2):719–739

    Article  MathSciNet  MATH  Google Scholar 

  49. Quintana-Murillo J, Yuste SB (2013) A finite difference method with non-uniform timesteps for fractional diffusion and diffusion–wave equations. Eur Phys J Spec Top 222(8):1987–1998

    Article  Google Scholar 

  50. Yuste SB, Quintana-Murillo J (2012) A finite difference method with non-uniform timesteps for fractional diffusion equations. Comput Phys Commun 183(12):2594–2600

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhang Y, Sun Z, Liao H (2014) Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J Comput Phys 265:195–210

    Article  MathSciNet  MATH  Google Scholar 

  52. Li C, Yi Q, Chen A (2016) Finite difference methods with non-uniform meshes for nonlinear fractional differential equations. J Comput Phys 316:614–631

    Article  MathSciNet  MATH  Google Scholar 

  53. Stynes M, O’Riordan E, Gracia JL (2017) Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J Numer Anal 55(2):1057–1079

    Article  MathSciNet  MATH  Google Scholar 

  54. Huang G, Huang Q, Zhan H (2006) Evidence of one-dimensional scale-dependent fractional advection–dispersion. J Contam Hydrol 85(1):53–71

    Article  Google Scholar 

  55. Garrard RM, Zhang Y, Wei S, Sun HG, Qian J (2017) Can a time fractional-derivative model capture scale-dependent dispersion in saturated soils? Groundwater 55(6):857–870

    Article  Google Scholar 

  56. Chen D, Sun HG, Zhang Y (2013) Fractional dispersion equation for sediment suspension. J Hydrol 491:13–22

    Article  Google Scholar 

  57. Nikora V, Habersack H, Huber T, McEwan I (2002) On bed particle diffusion in gravel bed flows under weak bed load transport. Water Resour Res 38(6):171–179

    Article  Google Scholar 

  58. Fogg GE, LaBolle EM (2006) Motivation of synthesis, with an example on groundwater quality sustainability. Water Resour Res 42(3):W03S05

    Article  Google Scholar 

  59. Chen W, Wang F, Zheng B, Cai W (2017) Non-Euclidean distance fundamental solution of Hausdorff derivative partial differential equations. Eng Anal Bound Elem 84:213–219

    Article  MathSciNet  MATH  Google Scholar 

  60. Wei S, Chen W, Zhang J (2017) Time-fractional derivative model for chloride ions sub-diffusion in reinforced concrete. Eur J Environ Civ Eng 21(3):319–331

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41330632, 11572112, and 41628202), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant Nos. KYCX17_0488 and KYCX17_0490), and the Fundamental Research Funds for the Central Universities (2017B710X14, 2017B21614, 2015B03814 and 2017B709X14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HongGuang Sun.

Appendix: Formulation of numerical schemes to solve the fractional relaxation and diffusion equations

Appendix: Formulation of numerical schemes to solve the fractional relaxation and diffusion equations

Anomalous relaxation and diffusion is commonly observed in field experiments, especially in unsaturated flow and transport processes. To describe the memory effect imbedded in anomalous diffusion, the Caputo time fractional relaxation equation is given by

$$ \left\{ {\begin{array}{ll} &{{}_{0}^{C} D_{t}^{\gamma } u(t) + Bu(t) = f(t), \, 0 \le n - 1 < \gamma \le n \le 2} \\ &{u^{\left( k \right)} (0) = u_{0}^{\left( k \right)} \, \left( {k = 0,1, \ldots ,n - 1} \right)} \\ \end{array} } \right. $$
(19)

where \( 0 < \gamma \le 1 \) represents the order of the fractional derivative in time.

Similarly, the time fractional diffusion equation can be expressed by:

$$ \left\{ {\begin{array}{lll} &{\frac{{\partial^{\alpha } u(x,t)}}{{\partial t^{\alpha } }} = D(x,t)\frac{{\partial^{2} u(x,t)}}{{\partial x^{2} }} + f(x,t)} \\ &u(x,t) = h(x,t),x \in \partial \Omega , \, t > 0, \, \\ &u(x,0) = w(x,t), \, t = 0. \hfill \end{array} } \right. $$
(20)

where α is the fractional order and \( \alpha \in (0,1] \), \( x \in [0,L], \, t > 0 \), D(x,t) [L2T−α] is the diffusion coefficient, and f(x,t) represents the source/sink term.

It is known [49, 50] that the initial-value problem (19) can be converted to the following Volterra integral equation:

$$ u(t) = \sum\limits_{i = 0}^{n - 1} {u_{0}^{\left( j \right)} } \frac{{t^{j} }}{j!} + \frac{1}{\Gamma (\gamma )}\int\limits_{0}^{t} {\left( {t - \tau } \right)^{\gamma - 1} (f(\tau ) - Bu(\tau ))d} \tau $$
(21)

1.1 S-FDM

Here, denoting \( \Delta_{t} u(x,t_{k} ) = u(x,t_{k + 1} ) - u(x,t_{k} ),{\text{ and }}b_{k,j} = k^{1/\alpha } - j^{1/\alpha } \), we obtain a numerical scheme of the rectangular quadrature formula at the power-law time

$$ \int\limits_{0}^{{t_{k + 1} }} {\left( {t_{k + 1} - \tau } \right)^{\gamma - 1} (f(\tau ) - Bu(\tau ))d} \tau \approx \sum\limits_{j = 0}^{k} {m_{j,j + 1} } (f(t_{j} ) - Bu_{j} ) $$
(22)

where \( m_{j,k} = \frac{{\Delta t_{\gamma } }}{\gamma }(b_{n + 1,j}^{\gamma } - b_{n + 1,k + 1}^{\gamma } ) \), and we can have a lower triangular matrix M(n+1)*(n+2) as follows

$$ {\mathbf{M}} = \left[ {\begin{array}{*{20}c} {b_{1,0} } & {b_{1,1} } & 0 & \cdots & 0 & 0 \\ {b_{2,0} } & {b_{2,1} } & {b_{2,2} } & \cdots & 0 & 0 \\ \vdots & {} & \ddots & \ddots & {} & \vdots \\ {b_{n,0} } & {b_{n,1} } & {b_{n,2} } & \cdots & {b_{n,n} } & 0 \\ {b_{n + 1,0} } & {b_{n + 1,1} } & {b_{n + 1,2} } & \cdots & {b_{n + 1,n} } & {b_{n + 1,n + 1} } \\ \end{array} } \right]_{(n + 1) \times (n + 2)} $$

Here, we can also solve the relaxation equation through the implicit scheme after applying the scale-dependent difference for the Caputo time fractional derivative:

$$ \begin{aligned} &\frac{{\partial^{\gamma } u(t_{n + 1} )}}{{\partial t^{\gamma } }} \approx \frac{1}{\Gamma (1 - \gamma )}\sum\limits_{k = 0}^{n} {\frac{{\Delta_{t} u(t_{k} )}}{{\tau_{k + 1} }}} \int_{{t_{k} }}^{{t_{k + 1} }} {\frac{d\xi }{{(t_{n + 1} - \xi )^{\gamma } }}} \hfill \\ &\quad = \frac{{ - \Delta t_{\gamma }^{ - 1} }}{\Gamma (2 - \alpha )}\sum\limits_{k = 0}^{n} {\frac{{\Delta_{t} u(t_{k} )}}{{b_{k + 1,k} }}} [(b_{n + 1,k + 1} )^{1 - \gamma } - (b_{n + 1,k} )^{1 - \gamma } ] \hfill \\ \end{aligned} $$
(23)

where \( \tau_{k} = t_{k} - t_{k - 1} \). The function u(t) in (23) is the solution of Eq. (1).

Combining the implicit finite difference scheme and Eq. (8), the time fractional relaxation equation with the implicit scheme can possess the numerical results with the S-FDM as follows:

n = 0

$$ \left( {\frac{{\Delta t_{\alpha }^{ - 1} }}{\Gamma (2 - \alpha )} + B} \right)u(t_{1} ) = \frac{{\Delta t_{\alpha }^{ - 1} }}{\Gamma (2 - \alpha )}u(t_{0} ) + f(t_{1} ) $$

n = 1

$$ \begin{aligned} & \left( {\frac{{\Delta t_{\alpha }^{ - 1} }}{\Gamma (2 - \alpha )} + B} \right)u(t_{2} ) = f(t_{2} ) \\ & \quad + \frac{{\Delta t_{\alpha }^{ - 1} }}{\Gamma (2 - \alpha )}\left( {\left( {\frac{{b_{2,1}^{1 - \alpha } }}{{b_{2,1} }} + b_{2,1}^{1 - \alpha } - b_{2,0}^{1 - \alpha } } \right)u(t_{1} ) - \left( {b_{2,1}^{1 - \alpha } - b_{2,0}^{1 - \alpha } } \right)u(t_{0} )} \right) \\ \end{aligned} $$

n2

$$ \begin{aligned} & \left( {\frac{{\Delta t_{\alpha }^{ - 1} }}{\Gamma (2 - \alpha )}\frac{{b_{n + 1,n}^{1 - \alpha } }}{{b_{n + 1,n} }} + B} \right)u(t_{n + 1} ) \\ & \quad = \frac{{\Delta t_{\alpha }^{ - 1} }}{\Gamma (2 - \alpha )}\left( \begin{aligned} \left( {\frac{{b_{n + 1,n}^{1 - \alpha } }}{{b_{n + 1,n} }} + \frac{{b_{n + 1,n}^{1 - \alpha } - b_{n + 1,n - 1}^{1 - \alpha } }}{{b_{n,n - 1} }}} \right)u(t_{n} ) \hfill \\ - \left( {b_{n + 1,1}^{1 - \alpha } - b_{n + 1,0}^{1 - \alpha } } \right)u(t_{0} ) + \sum\limits_{k = 1}^{n - 1} {u(t_{k} )} \hfill \\ \left( { - \frac{{b_{n + 1,k + 1}^{1 - \alpha } - b_{n + 1,k}^{1 - \alpha } }}{{b_{k + 1,k} }} + \frac{{b_{n + 1,k}^{1 - \alpha } - b_{n + 1,k - 1}^{1 - \alpha } }}{{b_{k,k - 1} }}} \right) \hfill \\ \end{aligned} \right) + f(t_{n + 1} ) \\ \end{aligned} $$

where ti stands for the time position.

Compared with the numerical scheme at the clock time, the S-FDM appears to be complex and highly computationally efficient due to its complex formula containing the part of bk,j. However, the complex formulas show interesting generalizations to accelerate the computational efficiency by reading a lower triangular matrix M(n+1)*(n+1) and matrix N(n+1)*(n+1) = M.(1−α) and reach high precision in solutions:

$$ {\mathbf{M}} = \left[ {\begin{array}{*{20}c} {b_{1,0} } & 0 & \cdots & 0 & 0 \\ {b_{2,0} } & {b_{2,1} } & \cdots & 0 & 0 \\ \vdots & {} & \ddots & {} & \vdots \\ {b_{n,0} } & {b_{n,1} } & \cdots & {b_{n,n - 1} } & 0 \\ {b_{n + 1,0} } & {b_{n + 1,1} } & \cdots & {b_{n + 1,n - 1} } & {b_{n + 1,n} } \\ \end{array} } \right]_{{\left( {n + 1} \right) \times \left( {n + 1} \right)}} $$

The time fractional diffusion equation is:

n = 0

$$ \begin{aligned} & \left( {\frac{{\Delta t_{\alpha }^{ - 1} }}{\Gamma (2 - \alpha )} + \frac{2}{{\Delta x^{2} }}} \right)u(x_{i} ,t_{1} ) \\ & \quad - D\frac{{u(x_{i + 1} ,t_{1} ) + u(x_{i - 1} ,t_{1} )}}{{\Delta x^{2} }} = \frac{{\Delta t_{\alpha }^{ - 1} }}{\Gamma (2 - \alpha )}u(x_{i} ,t_{0} ) + f(x_{i} ,t_{1} ) \\ \end{aligned} $$

n = 1

$$ \begin{aligned} & \left( {\frac{{\Delta t_{\alpha }^{ - 1} }}{\Gamma (2 - \alpha )} + \frac{2}{{\Delta x^{2} }}} \right)u(x_{i} ,t_{2} ) \\ & \quad - D\frac{{u(x_{i + 1} ,t_{2} ) + u(x_{i - 1} ,t_{2} )}}{{\Delta x^{2} }} = f(x_{i} ,t_{2} ) \\ & \quad + \frac{{\Delta t_{\alpha }^{ - 1} }}{\Gamma (2 - \alpha )}\left( {\left( {\frac{{b_{2,1}^{1 - \alpha } }}{{b_{2,1} }} + b_{2,1}^{1 - \alpha } - b_{2,0}^{1 - \alpha } } \right)u(x_{i} ,t_{1} )} \right. \\ & \quad \left. { -\, \left( {b_{2,1}^{1 - \alpha } - b_{2,0}^{1 - \alpha } } \right)u(x_{i} ,t_{0} )} \right) \\ \end{aligned} $$

n2

$$ \begin{aligned} & \left( {\frac{{\Delta t_{\alpha }^{ - 1} }}{\Gamma (2 - \alpha )}\frac{{b_{n + 1,n}^{1 - \alpha } }}{{b_{n + 1,n} }} + \frac{2}{{\Delta x^{2} }}} \right)u(x_{i} ,t_{n + 1} ) \\ & \quad - D\frac{{u(x_{i + 1} ,t_{n + 1} ) + u(x_{i - 1} ,t_{n + 1} )}}{{\Delta x^{2} }} \\ & \quad = \frac{{\Delta t_{\alpha }^{ - 1} }}{\Gamma (2 - \alpha )}\left( \begin{aligned} \left( {\frac{{b_{n + 1,n}^{1 - \alpha } }}{{b_{n + 1,n} }} + \frac{{b_{n + 1,n}^{1 - \alpha } - b_{n + 1,n - 1}^{1 - \alpha } }}{{b_{n,n - 1} }}} \right)u(x_{i} ,t_{n} ) \hfill \\ - \left( {b_{n + 1,1}^{1 - \alpha } - b_{n + 1,0}^{1 - \alpha } } \right)u(x_{i} ,t_{0} ) + \sum\limits_{k = 1}^{n - 1} {u(x_{i} ,t_{k} )} \hfill \\ \left( { - \frac{{b_{n + 1,k + 1}^{1 - \alpha } - b_{n + 1,k}^{1 - \alpha } }}{{b_{k + 1,k} }} + \frac{{b_{n + 1,k}^{1 - \alpha } - b_{n + 1,k - 1}^{1 - \alpha } }}{{b_{k,k - 1} }}} \right) \hfill \\ \end{aligned} \right) + f(x_{i} ,t_{n + 1} ) \\ \end{aligned} $$

where xi represents the space position, and ti stands for the time position.

1.2 Uniform grid

Here, denoting \( \Delta_{t} u(x,t_{k} ) = u(x,t_{k + 1} ) - u(x,t_{k} ),\; {\text{ and }}\; \tau = T /N, \, t_{k} = k\tau \), we obtain a numerical scheme for the Caputo derivative definition at the clock time

$$ \begin{aligned} & {}_{0}^{C} D_{t}^{\alpha } u(x,t_{k + 1} ) \approx \frac{1}{\Gamma (1 - \alpha )}\sum\limits_{j = 0}^{k} {\frac{{\Delta_{t} u(x,t_{j + 1} )}}{\tau }} \int_{j\tau }^{{\left( {j + 1} \right)\tau }} {\frac{d\xi }{{\left( {t_{k + 1} - \xi } \right)^{\alpha } }}} \\ & \quad = \frac{{\tau^{ - \alpha } }}{\Gamma (2 - \alpha )}\sum\limits_{j = 0}^{k} {\Delta_{t} u(x,t_{j + 1} )} \left[ {\left( {j + 1} \right)^{1 - \alpha } - j^{1 - \alpha } } \right], \\ \end{aligned} $$

Combining the implicit finite difference scheme and Eq. (8), the time fractional relaxation equation with the implicit scheme can possess the numerical results with the uniform grid as follows:

n = 0

$$ \begin{aligned} & \left( {\frac{{\tau^{ - \alpha } }}{\Gamma (2 - \alpha )} + \frac{2}{{\Delta x^{2} }}} \right)u(x_{i} ,t_{1} ) \\ & \quad - D\frac{{u(x_{i + 1} ,t_{1} ) + u(x_{i - 1} ,t_{1} )}}{{\Delta x^{2} }} = \frac{{\tau^{ - \alpha } }}{\Gamma (2 - \alpha )}u(x_{i} ,t_{0} ) + f(x_{i} ,t_{1} ) \\ \end{aligned} $$

n = 1

$$ \begin{aligned} & \left( {\frac{{\tau^{ - \alpha } }}{\Gamma (2 - \alpha )} + \frac{2}{{\Delta x^{2} }}} \right)u(x_{i} ,t_{2} ) - D\frac{{u(x_{i + 1} ,t_{2} ) + u(x_{i - 1} ,t_{2} )}}{{\Delta x^{2} }} = f(x_{i} ,t_{2} ) \\ & \quad + \frac{{{ - }\tau^{ - \alpha } }}{\Gamma (2 - \alpha )}\left( {\left( {2^{1 - \alpha } - 2} \right)u(x_{i} ,t_{1} ) - \left( {2^{1 - \alpha } - 1} \right)u(x_{i} ,t_{0} )} \right) \\ \end{aligned} $$

n>2

$$ \begin{aligned} & \left( {\frac{{\tau^{1 - \alpha } }}{\Gamma (2 - \alpha )} + \frac{2}{{\Delta x^{2} }}} \right)u(x_{i} ,t_{n + 1} ) - D\frac{{u(x_{i + 1} ,t_{n + 1} ) + u(x_{i - 1} ,t_{n + 1} )}}{{\Delta x^{2} }} \\ & \quad = \frac{{ - \tau^{1 - \alpha } }}{\Gamma (2 - \alpha )}\left( \begin{aligned} \left( {2^{1 - \alpha } - 2} \right)u(x_{i} ,t_{n} ) \hfill \\ - \left( {\left( {n + 1} \right)^{1 - \alpha } - n^{1 - \alpha } } \right)u(x_{i} ,t_{0} ) + \sum\limits_{k = 1}^{n - 1} {u(x_{i} ,t_{n - k} )} \hfill \\ \left( {\left( {k + 2} \right)^{1 - \alpha } - 2\left( {k + 1} \right)^{1 - \alpha } + k^{1 - \alpha } } \right) \hfill \\ \end{aligned} \right) + f(x_{i} ,t_{n + 1} ) \\ \end{aligned} $$

where xi represents the space position, and ti stands for the time.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Sun, H., Zhang, Y. et al. A scale-dependent finite difference approximation for time fractional differential equation. Comput Mech 63, 429–442 (2019). https://doi.org/10.1007/s00466-018-1601-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-018-1601-x

Keywords

Navigation