Skip to main content
Log in

Multi-phase-field modeling of anisotropic crack propagation for polycrystalline materials

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A new multi-phase-field method is developed for modeling the fracture of polycrystals at the microstructural level. Inter and transgranular cracking, as well as anisotropic effects of both elasticity and preferential cleavage directions within each randomly oriented crystal are taken into account. For this purpose, the proposed phase field formulation includes: (a) a smeared description of grain boundaries as cohesive zones avoiding defining an additional phase for grains; (b) an anisotropic phase field model; (c) a multi-phase field formulation where each preferential cleavage direction is associated with a damage (phase field) variable. The obtained framework allows modeling interactions and competition between grains and grain boundary cracks, as well as their effects on the effective response of the material. The proposed model is illustrated through several numerical examples involving a full description of complex crack initiation and propagation within 2D and 3D models of polycrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

Notes

  1. Some materials, for example, Ceramics, MgO or Zn at low-temperature conditions exhibit a brittle behavior even at micro scale. Moreover, stress corrosion cracking can modify the mechanical characteristics of the metal and provide brittle failure behavior.

References

  1. Aguilar-Elguézabal A, Bocanegra-Bernal MH (2014) Fracture behaviour of \(\alpha \)-\({\rm Al}_{2}{\rm O}_{3}\) ceramics reinforced with a mixture of single-wall and multi-wall carbon nanotubes. Compos B Eng 60:463–470

    Article  Google Scholar 

  2. Akao M, Aoki H, Kato K (1981) Mechanical properties of sintered hydroxyapatite for prosthetic applications. J Mater Sci 16(3):809–812

    Article  Google Scholar 

  3. Ambrosio L, Tortorelli VM (1990) Approximation of functionals depending on jumps by elliptic functionals via \(\varGamma \)-convergence. Commun Pure Appl Math 43:999–1036

    Article  MathSciNet  MATH  Google Scholar 

  4. Ambrosio L, Tortorelli VM (1992) On the approximation of free discontinuity problems. Boll UMI 6–B:105–123

    MathSciNet  MATH  Google Scholar 

  5. Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57(8):1209–1229

    Article  MATH  Google Scholar 

  6. Barenblatt GI (1959) The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks. J Appl Math Mech 23(3):622–636

    Article  MathSciNet  MATH  Google Scholar 

  7. Borden MJ (2012) Isogeometric analysis of phase-field models for dynamic brittle and ductile fracture, PhD dissertation

  8. Bourdin B, Larsen C, Richardson C (2011) A time-discrete model for dynamic fracture based on crack regularization. Int J Fract 168:133–143

    Article  MATH  Google Scholar 

  9. Braides DP (1998) Approximation of free discontinuity problems. Springer, Berlin

    Book  MATH  Google Scholar 

  10. Braides DP (2002) \(\varGamma \)-Convergence for beginners. Oxford University Press, New York

    Book  Google Scholar 

  11. Clayton JD, Knap J (2015) Phase field modeling of directional fracture in anisotropic polycrystals. Comput Mater Sci 98:158–169

    Article  Google Scholar 

  12. Clayton JD, Knap J (2016) Phase field modeling and simulation of coupled fracture and twinning in single crystals and polycrystals. Comput Methods Appl Mech Eng 312:447–467

  13. Dal Maso G (1993) An introduction to \(\varGamma \)-convergence. Birkhäuser, Boston

    Book  Google Scholar 

  14. Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8:100–104

    Article  Google Scholar 

  15. Espinosa HD, Zavattieri PD (2003) A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part I: theory and numerical implementation. Mech Mater 35(3):333–364

    Article  Google Scholar 

  16. Espinosa HD, Zavattieri PD (2003) A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part II: numerical examples. Mech Mater 35(3):365–394

    Article  Google Scholar 

  17. Faber KT, Evans AG (1983) Crack deflection processes\(-\)I. Theory. Acta Metall 31(4):565–576

    Article  Google Scholar 

  18. Farkas D, Van Swygenhoven H, Derlet PM (2002) Intergranular fracture in nanocrystalline metals. Phys Rev B 66(6):060101

    Article  Google Scholar 

  19. Francfort GA, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46(8):1319–1342

    Article  MathSciNet  MATH  Google Scholar 

  20. Herbig M, King A, Reischig P, Proudhon H, Lauridsen EM, Marrow J, Buffière JY, Ludwig W (2011) 3-d growth of a short fatigue crack within a polycrystalline microstructure studied using combined diffraction and phase-contrast x-ray tomography. Acta Mater 59(2):590–601

    Article  Google Scholar 

  21. Hofacker M, Miehe C (2013) A phase field model of dynamic fracture: robust field updates for the analysis of complex crack patterns. Int J Numer Meth Eng 93(3):276–301

    Article  MathSciNet  MATH  Google Scholar 

  22. Jamal M, Asadabadi SJ, Ahmad I, Aliabad HAR (2014) Elastic constants of cubic crystals. Comput Mater Sci 95:592–599

    Article  Google Scholar 

  23. Karma A, Kessler D, Levine H (2001) Phase-field model of mode III dynamic fracture. Phys Rev Lett 87(4):45501

    Article  Google Scholar 

  24. King A, Ludwig W, Herbig M, Buffière J-Y, Khan AA, Stevens N, Marrow TJ (2011) Three-dimensional in situ observations of short fatigue crack growth in magnesium. Acta Mater 59(17):6761–6771

    Article  Google Scholar 

  25. Li B, Peco C, Millán D, Arias I, Arroyo M (2015) Phase-field modeling and simulation of fracture in brittle materials with strongly anisotropic surface energy. Int J Numer Meth Eng 102(3–4):711–727

    Article  MathSciNet  MATH  Google Scholar 

  26. Luther T, Könke C (2009) Polycrystal models for the analysis of intergranular crack growth in metallic materials. Eng Fract Mech 76(15):2332–2343

    Article  Google Scholar 

  27. Mehl MJ (1993) Pressure dependence of the elastic moduli in aluminum-rich Al–Li compounds. Phys Rev B 47(5):2493

    Article  Google Scholar 

  28. Miehe C, Hofacker M, Welschinger F (2010) A phasefield model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199:2765–2778

    Article  MATH  Google Scholar 

  29. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Meth Eng 46(1):131–156

    Article  MATH  Google Scholar 

  30. Mumford D, Shah J (1989) Optimal approximations by piecewise smooth functions and associated variational problems. Commun Pure Appl Math 42:577–685

    Article  MathSciNet  MATH  Google Scholar 

  31. Munroe PR, Baker I (1991) Observation of \(< 001>\) dislocations and a mechanism for transgranular fracture on \(\{\)001\(\}\) in FeAl. Acta Metall Mater 39(5):1011–1017

    Article  Google Scholar 

  32. Musienko A, Cailletaud G (2009) Simulation of inter-and transgranular crack propagation in polycrystalline aggregates due to stress corrosion cracking. Acta Mater 57(13):3840–3855

    Article  Google Scholar 

  33. Moran B, Belytschko T, Sukumar N, Moës N (2000) Extended finite element method for three-dimensional crack modeling. Int J Numer Meth Eng 48(11):1549–1570

    Article  MATH  Google Scholar 

  34. Nguyen TT (2015) Modeling of complex microcracking in cement based materials by combining numerical simulations based on a phase-field method and experimental 3D imaging. Ph.d. thesis, Université Paris-Est

  35. Nguyen TT, Bolivar J, Réthoré J, Baietto MC, Fregonese M (2017) A phase field method for modeling stress corrosion crack propagation in a nickel base alloy. Int J Solids Struct 112:65–82

  36. Nguyen TT, Réthoré J (2017) Phase field modelling of anisotropic crack propagation (under review)

  37. Nguyen TT, Yvonnet J, Bornert M, Chateau C (2016) Initiation and propagation of complex 3D networks of cracks in heterogeneous quasi-brittle materials: direct comparison between in situ testing-microct experiments and phase field simulations. J Mech Phys Solids 95:320–350

    Article  Google Scholar 

  38. Nguyen TT, Yvonnet J, Bornert M, Chateau C, Sab K, Romani R, Le Roy R (2016) On the choice of parameters in the phase field method for simulating crack initiation with experimental validation. Int J Fract 197(2):213–226

    Article  Google Scholar 

  39. Nguyen TT, Yvonnet J, Zhu Q-Z, Bornert M, Chateau C (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Eng Fract Mech 139:18–39

  40. Nguyen TT, Yvonnet J, Zhu Q-Z, Bornert M, Chateau C (2016) A phase-field method for computational modeling of interfacial damage interacting with crack propagation in realistic microstructures obtained by microtomography. Comput Methods Appl Mech Eng 312:567–595

    Article  MathSciNet  Google Scholar 

  41. Qian J, Li S (2011) Application of multiscale cohesive zone model to simulate fracture in polycrystalline solids. J Eng Mater Technol 133(1):011010

    Article  Google Scholar 

  42. Quey R (2016) Neper: software package for polycrystal generation and meshing

  43. Sfantos GK, Aliabadi MH (2007) A boundary cohesive grain element formulation for modelling intergranular microfracture in polycrystalline brittle materials. Int J Numer Meth Eng 69(8):1590–1626

    Article  MathSciNet  MATH  Google Scholar 

  44. Simone A, Duarte CA, Van der Giessen E (2006) A generalized finite element method for polycrystals with discontinuous grain boundaries. Int J Numer Meth Eng 67(8):1122–1145

    Article  MathSciNet  MATH  Google Scholar 

  45. Sukumar N, Srolovitz DJ, Baker TJ, Prévost J-H (2003) Brittle fracture in polycrystalline microstructures with the extended finite element method. Int J Numer Meth Eng 56(14):2015–2037

    Article  MATH  Google Scholar 

  46. Verhoosel CV, De Borst R (2013) A phase-field model for cohesive fracture. Int J Numer Meth Eng 96(1):43–62

    Article  MathSciNet  MATH  Google Scholar 

  47. Verhoosel CV, Gutiérrez MA (2009) Modelling inter-and transgranular fracture in piezoelectric polycrystals. Eng Fract Mech 76(6):742–760

    Article  Google Scholar 

  48. Wang L, Limodin N, El Bartali A, Witz J-F, Seghir R, Buffiere J-Y, Charkaluk E (2016) Influence of pores on crack initiation in monotonic tensile and cyclic loadings in lost foam casting a319 alloy by using 3d in-situ analysis. Mater Sci Eng A 673:362–372

    Article  Google Scholar 

  49. Warner DH, Molinari JF (2006) Micromechanical finite element modeling of compressive fracture in confined alumina ceramic. Acta Mater 54(19):5135–5145

    Article  Google Scholar 

  50. Was GS, Rajan VB (1987) The mechanism of intergranular cracking of Ni–Cr–Fe alloys in sodium tetrathionate. Metall Trans A 18(7):1313–1323

    Article  Google Scholar 

  51. Wei YJ, Anand L (2004) Grain-boundary sliding and separation in polycrystalline metals: application to nanocrystalline fcc metals. J Mech Phys Solids 52(11):2587–2616

    Article  MATH  Google Scholar 

  52. Xu X-P, Needleman A (1993) Void nucleation by inclusion debonding in a crystal matrix. Modell Simul Mater Sci Eng 1(2):111

    Article  Google Scholar 

  53. Yang WH, Srolovitz DJ, Hassold GN, Anderson MP (1990) Microstructural effects in the fracture of brittle materials. In: Anderson MP, Rollett AD (eds) Simulation and theory of evolving microstructures. The Metallurgical Society, Warrendale, PA, pp 277–284

  54. Zhai T, Jiang XP, Li JX, Garratt MD, Bray GH (2005) The grain boundary geometry for optimum resistance to growth of short fatigue cracks in high strength Al-alloys. Int J Fatigue 27(10):1202–1209

    Article  Google Scholar 

  55. Zhai T, Wilkinson AJ, Martin JW (2000) A crystallographic mechanism for fatigue crack propagation through grain boundaries. Acta Mater 48(20):4917–4927

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the National French Research Agency (ANR) for its financial support under contract MATETPRO ANR-12-RMNP-0020 (ECCOFIC project). The authors would like also to thank their partners MATEIS, Areva, Andra, Institut de la Corrosion, ACXCOR and MISTRAS by their participation into the fruitful discussion during this work. Finally, the fnancial support of Institut Universitaire de France (IUF) is acknowledged for J. Yvonnet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Réthoré.

Appendices

Appendix 1: Smeared displacement jump approximation (JA2)

In [40] we proposed a method to approximate the displacement jump \(\llbracket {\mathbf {u}}({\mathbf {x}})\rrbracket \) created by interface decohesion as a smooth transition without additional variable, defined as follows:

$$\begin{aligned} \llbracket {\mathbf {u}}({\mathbf {x}}) \rrbracket \simeq {\mathbf {w}}({\mathbf {x}}) = h \nabla {\mathbf {u}} ({\mathbf {x}}) \mathbf {n}^{\varGamma _B}, \end{aligned}$$
(66)

where \(\mathbf {w}({\mathbf {x}})\) denotes the smoothed displacement jump approximation, h is a small scalar parameter and \({\mathbf {n}}^{\varGamma _B}\) the normal vector to \(\varGamma ^B\) at the point \({\mathbf {x}}\).

The corresponding BVP can be rewritten as:

$$\begin{aligned} \left\{ \begin{array}{{lclll}} \nabla \cdot {\varvec{\sigma }}(\mathbf {u}, {\varvec{d}}) &{}=&{} 0 &{}&{} \forall \mathbf {x} \in \varOmega ,\\ \gamma _{\beta }\big [\mathbf {t}(\mathbf {w}, \kappa ) - \mathbf {n}^{\varGamma _{\beta }} \cdot {\varvec{\sigma }}(\mathbf {u}, {\varvec{d}})\big ] &{}=&{} 0&{}&{} \forall \mathbf {x} \in \varGamma _{\beta },\\ \mathbf {u} &{}=&{} \overline{\mathbf {u}} &{}&{} \forall \mathbf {x} \in \partial \varOmega _u,\\ \mathbf {n}_{t} \cdot {\varvec{\sigma }}&{}=&{} \overline{\mathbf {t}} &{}&{} \forall \mathbf {x} \in \partial \varOmega _t.\\ \end{array}\right. \end{aligned}$$
(67)

The Cauchy stress is here defined as follows:

$$\begin{aligned} \sigma (\mathbf {u}, {\varvec{d}})= & {} \dfrac{\partial W_u^e}{\partial \mathbf {\varepsilon }^e}\nonumber \\= & {} \bigg [ g({\varvec{d}}) \mathbb {C}^0 + k_0 \mathbf {1} \otimes \mathbf {1} \big [ 1 - g({\varvec{d}})\big ] \text {sign} ^- ( \mathop {\mathrm{tr }}\nolimits {{\varvec{\varepsilon }}^e}) \bigg ]: {\varvec{\varepsilon }}^e \nonumber \\ \end{aligned}$$
(68)

where the expression of elastic strain \(\mathbf {\varepsilon }^e\) is given (45). Using the variation in the displacement for (67)\(_1\), the variation in the displacement jump for (67)\(_2\), we obtain the corresponding weak form:

(69)

The details of linearization and numerical implementation can be found in the work [40].

Appendix 2: Anisotropic elasticity

In a polycrystalline material, the elastic moduli mentioned in (29) depend on the relative orientation of different grains. Hence the rotation of the grains must be taken into account to determine the elastic stiffness tensor for each grain. This can be achieved by using the reference transformation tensor and grains coordinate system. Suppose that the components of the elastic stiffness tensor matrix \(\mathbf {C}^0 _g \) (in Voigt notation) are given in grains coordinates, then the position-dependent elastic stiffness tensor with respect to the reference coordinate system is given by:

$$\begin{aligned} \mathbf {C}^0 = \mathbf {P}^{\text {T}} \mathbf {C}^0 _g \mathbf {P}, \end{aligned}$$
(70)

where \(\mathbf {P}\) is the transformation tensor in Voigt’s notation. In the general 3D case, the transformation matrix \(\mathbf {P}\) can be defined by the expression:

$$\begin{aligned} \mathbf {P}= & {} \left[ \begin{matrix} L_{11}^2&{} L_{21}^2&{} L_{31}^2&{} 2L_{21}L_{11} \\ L_{12}^2&{} L_{22}^2&{} L_{32}^2&{} 2L_{22}L_{12} \\ L_{13}^2&{} L_{23}^2&{} L_{33}^2&{} 2L_{23}L_{13} \\ L_{12}L_{11}&{} L_{21}L_{22}&{} L_{31}L_{32}&{} L_{11}L_{22}+L_{21}L_{12}\\ L_{11}L_{13}&{} L_{21}L_{23}&{} L_{31}L_{33}&{} L_{13}L_{21}+L_{23}L_{11}\\ L_{13}L_{12}&{} L_{23}L_{22}&{} L_{33}L_{32}&{} L_{13}L_{22}+L_{23}L_{12}\\ \end{matrix}\right. \nonumber \\&\left. \begin{matrix} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2L_{31}L_{11}&{} 2L_{21}L_{31}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2L_{12}L_{32}&{} 2L_{32}L_{22}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2L_{13}L_{33}&{} 2L_{32}L_{33}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ L_{31}L_{12}+L_{11}L_{32}&{} L_{31}L_{22}+L_{21}L_{32}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ L_{11}L_{33}+L_{31}L_{13}&{} L_{33}L_{21}+L_{23}L_{31}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ L_{12}L_{33}+L_{13}L_{32}&{} L_{33}L_{22}+L_{23}L_{32}\\ \end{matrix}\right] \nonumber \\ \end{aligned}$$
(71)

where \(L_{ij}\) are the components of the rotation matrix.

For most materials treated in this work we considered an anisotropic behavior with cubic symmetry, where the elastic stiffness tensor contains only three independent parameters, the corresponding matrix in 2D reads:

$$\begin{aligned} \mathbf {C}^0 _g = \left[ \begin{matrix} C_{11}&{} \quad C_{12}&{} \quad 0\\ C_{12}&{} \quad C_{11}&{} \quad 0\\ 0&{} \quad 0&{} \quad C_{44} \end{matrix}\right] . \end{aligned}$$
(72)

The corresponding bulk modulus is given as \(k_0 = (C_{11} + 2C_{12})/3\) (see [22, 27]). The rotation of material orientation can be simply determined following [25]. The transformation matrix is here written as:

$$\begin{aligned} \mathbf {P} = \left[ \begin{matrix} c^2&{} \quad s^2&{} \quad 2cs\\ s^2&{} \quad c^2&{} \quad -2cs\\ -cs&{} \quad cs&{} \quad c^2-s^2 \end{matrix}\right] \end{aligned}$$
(73)

where \(c = \text {cos} \varphi _1 \), \(s = \text {sin} \varphi _1 \).

Appendix 3: Cohesive zone model for grain boundary

The Cohesive Zone Model (CZM) is used to model the grain boundary decohesion. An example of traction separation law is described in Fig. 33

Fig. 33
figure 33

Separation law used to simulate grain boundary decohesion, where \(t_u\) is fracture strength, \(t(\llbracket \mathbf {u}\rrbracket , \kappa )\), and \(\varPsi ^B\) are defined in (19)

In the case of polycrystalline materials, the fracture strength \(t_u\) may depend on the misorientation between neighboring single crystals, defined by:

$$\begin{aligned} {\varDelta \theta = \theta _1^i - \theta _2^i,} \end{aligned}$$
(74)

where \(\theta _1^i, \theta _2^i,\) are the orientations of two crystals along the considered grain boundary on plane i.

Following the work [26], the fracture strength is then expressed by the following:

$$\begin{aligned} {t_u(\varDelta \theta ^i) = t_u^{\text {avg}} + \dfrac{1}{3}\varDelta t_u \sum _i \text {cos} (4\varDelta \theta ^i),} \end{aligned}$$
(75)

where \(t_u^{\text {avg}}\), \(\varDelta t_u\) are the average and the maximal fracture strength deviation, respectively.

Fig. 34
figure 34

2D description of crystal orientation between two grains

An illustration for the case of 2D plane stress is depicted in Fig. 34. In that case, the grain boundary fracture strength is written by:

$$\begin{aligned} {t_u(\varDelta \theta ) = t_u^{\text {avg}} + \varDelta t_u \text {cos} (4\varDelta \theta ).} \end{aligned}$$
(76)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, TT., Réthoré, J., Yvonnet, J. et al. Multi-phase-field modeling of anisotropic crack propagation for polycrystalline materials. Comput Mech 60, 289–314 (2017). https://doi.org/10.1007/s00466-017-1409-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1409-0

Keywords

Navigation