Skip to main content
Log in

A new heterogeneous asynchronous explicit–implicit time integrator for nonsmooth dynamics

  • Review Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In computational structural dynamics, particularly in the presence of nonsmooth behavior, the choice of the time-step and the time integrator has a critical impact on the feasibility of the simulation. Furthermore, in some cases, as in the case of a bridge crane under seismic loading, multiple time-scales coexist in the same problem. In that case, the use of multi-time scale methods is suitable. Here, we propose a new explicit–implicit heterogeneous asynchronous time integrator (HATI) for nonsmooth transient dynamics with frictionless unilateral contacts and impacts. Furthermore, we present a new explicit time integrator for contact/impact problems where the contact constraints are enforced using a Lagrange multiplier method. In other words, the aim of this paper consists in using an explicit time integrator with a fine time scale in the contact area for reproducing high frequency phenomena, while an implicit time integrator is adopted in the other parts in order to reproduce much low frequency phenomena and to optimize the CPU time. In a first step, the explicit time integrator is tested on a one-dimensional example and compared to Moreau-Jean’s event-capturing schemes. The explicit algorithm is found to be very accurate and the scheme has generally a higher order of convergence than Moreau-Jean’s schemes and provides also an excellent energy behavior. Then, the two time scales explicit–implicit HATI is applied to the numerical example of a bridge crane under seismic loading. The results are validated in comparison to a fine scale full explicit computation. The energy dissipated in the implicit–explicit interface is well controlled and the computational time is lower than a full-explicit simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Abadie M (2000) Dynamic simulation of rigid bodies: modelling of frictional contact. In: Impacts in mechanical systems, pp 61–144. Springer

  2. Acary V (2012) Higher order event capturing time-stepping schemes for nonsmooth multibody systems with unilateral constraints and impacts. Appl Numer Math 62(10):1259–1275

    Article  MathSciNet  MATH  Google Scholar 

  3. Acary V (2013) Projected event-capturing time-stepping schemes for nonsmooth mechanical systems with unilateral contact and Coulomb’s friction. Comput Methods Appl Mech Eng 256:224–250

    Article  MathSciNet  MATH  Google Scholar 

  4. Acary V (2016) Energy conservation and dissipation properties of time-integration methods for nonsmooth elastodynamics with contact. ZAMM J Appl Math Mech 96:585–603

    Article  MathSciNet  Google Scholar 

  5. Acary V, Brogliato B (2008) Numerical methods for nonsmooth dynamical systems: applications in mechanics and electronics, vol 35. Springer, Berlin

    MATH  Google Scholar 

  6. Acary V, Jean M (2000) Numerical modeling of three dimensional divided structures by the non smooth contact dynamics method: application to masonry structures. In: The fifth international conference on computational structures technology, pp 211–221

  7. Alart P, Curnier A (1991) A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput Methods Appl Mech Eng 92(3):353–375

    Article  MathSciNet  MATH  Google Scholar 

  8. Anitescu M, Potra FA, Stewart DE (1999) Time-stepping for three-dimensional rigid body dynamics. Comput Methods Appl Mech Eng 177(3):183–197

    Article  MathSciNet  MATH  Google Scholar 

  9. Armero F, Petőcz E (1998) Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems. Comput Methods Appl Mech Eng 158(3):269–300

    Article  MathSciNet  MATH  Google Scholar 

  10. Baraff D (1994) Fast contact force computation for nonpenetrating rigid bodies. In: Proceedings of the 21st annual conference on computer graphics and interactive techniques, pp 23–34. ACM, New York, USA

  11. Belytschko T, Liu W, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New York

    MATH  Google Scholar 

  12. Belytschko T, Mullen R (1976) Mesh partitions of explicit–implicit time integration. In: Formulations and computational algorithms in finite element analysis, pp 673–690

  13. Belytschko T, Mullen R (1978) Stability of explicit–implicit mesh partitions in time integration. Int J Numer Methods Eng 12(10):1575–1586

    Article  MATH  Google Scholar 

  14. Belytschko T, Neal M (1991) Contact-impact by the pinball algorithm with penalty and Lagrangian methods. Int J Numer Methods Eng 31:547–572

    Article  MATH  Google Scholar 

  15. Betsch P, Steinmann P (2001) Conservation properties of a time fe methodpart ii: time-stepping schemes for non-linear elastodynamics. Int J Numer Methods Eng 50(8):1931–1955

    Article  MATH  Google Scholar 

  16. Brogliato B, Ten Dam A, Paoli L, Genot F, Abadie M (2002) Numerical simulation of finite dimensional multibody nonsmooth mechanical systems. Appl Mech Rev 55(2):107–150

    Article  Google Scholar 

  17. Brüls O, Acary V, Cardona A (2014) Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-\(\alpha \) scheme. Comput Methods Appl Mech Eng 281:131–161

    Article  MathSciNet  Google Scholar 

  18. Brun M, Batti A, Limam A, Combescure A (2012) Implicit/explicit multi-time step co-computations for predicting reinforced concrete structure response under earthquake loading. Soil Dyn Earthq Eng 33(1):19–37

    Article  Google Scholar 

  19. Brun M, Batti A, Limam A, Gravouil A (2012) Explicit/implicit multi-time step co-computations for blast analyses on a reinforced concrete frame structure. Finite Elem Anal Des 52:41–59

    Article  Google Scholar 

  20. Carpenter NJ, Taylor RL, Katona MG (1991) Lagrange constraints for transient finite element surface contact. Int J Numer Methods Eng 32(1):103–128

    Article  MATH  Google Scholar 

  21. Casadei F (2002) A hierarchic pinball method for contact-impact in fast transient dynamics. In: VI Congresso Nazionale della Società Italiana di Matematica Applicata e Industriale (SIMAI 2002), Chia (Cagliari), Italy, pp 27–31

  22. Chabrand P, Dubois F, Raous M (1998) Various numerical methods for solving unilateral contact problems with friction. Math Comput Model 28(4):97–108

    Article  MATH  Google Scholar 

  23. Chantrait T, Rannou J, Gravouil A (2014) Low intrusive coupling of implicit and explicit time integration schemes for structural dynamics: Application to low energy impacts on composite structures. Finite Elem Anal Des 86:23–33

    Article  MathSciNet  Google Scholar 

  24. Chen QZ, Acary V, Virlez G, Brüls O (2012) A Newmark-type integrator for flexible systems considering nonsmooth unilateral constraints. In: Eberhard P (ed) IMSD 2012—2nd joint international conference on multibody system dynamics. Stuttgart, Germany

  25. Chen QZ, Acary V, Virlez G, Brüls O (2013) A nonsmooth generalized-\(\alpha \) scheme for flexible multibody systems with unilateral constraints. Int J Numer Methods Eng 96(8):487–511

    Article  MathSciNet  MATH  Google Scholar 

  26. Cirak F, West M (2005) Decomposition contact response (dcr) for explicit finite element dynamics. Int J Numer Methods Eng 64(8):1078–1110

    Article  MathSciNet  MATH  Google Scholar 

  27. Combescure A, Gravouil A (2001) A time-space multi-scale algorithm for transient structural nonlinear problems. Méc Ind 2(1):43–55

    Article  MATH  Google Scholar 

  28. Combescure A, Gravouil A (2002) A numerical scheme to couple subdomains with different time-steps for predominantly linear transient analysis. Comput Methods Appl Mech Eng 191(11):1129–1157

    Article  MATH  Google Scholar 

  29. Combescure A, Gravouil A, Herry B (2003) An algorithm to solve transient structural non-linear problems for non-matching time-space domains. Comput Struct 81(12):1211–1222

    Article  MathSciNet  Google Scholar 

  30. Courant R, Friedrichs K, Lewy H (1928) Über die partiellen differenzengleichungen der mathematischen physik. Math Ann 100(1):32–74

    Article  MathSciNet  MATH  Google Scholar 

  31. Curnier A (1999) Unilateral contact. In: New developments in contact problems, pp 1–54. Springer, Wien

  32. Dabaghi F, Petrov A, Pousin J, Renard Y (2014) Convergence of mass redistribution method for the one-dimensional wave equation with a unilateral constraint at the boundary. ESAIM Math Model Numer Anal 48(4):1147–1169

    Article  MathSciNet  MATH  Google Scholar 

  33. De Saxcé G, Feng ZQ (1998) The bipotential method: a constructive approach to design the complete contact law with friction and improved numerical algorithms. Math Comput Model 28(4):225–245

    Article  MathSciNet  MATH  Google Scholar 

  34. Deuflhard P, Krause R, Ertel S (2008) A contact-stabilized newmark method for dynamical contact problems. Int J Numer Methods Eng 73(9):1274–1290

    Article  MathSciNet  MATH  Google Scholar 

  35. Dostál Z, Kozubek T, Vlach O, Brzobohatỳ T (2015) Reorthogonalization-based stiffness preconditioning in feti algorithms with applications to variational inequalities. Numer Linear Algebra Appl 22(6):987–998

    Article  MathSciNet  MATH  Google Scholar 

  36. Erickson D, Weber M, Sharf I (2003) Contact stiffness and damping estimation for robotic systems. Int J Robot Res 22(1):41–57

    Article  Google Scholar 

  37. Faucher V, Combescure A (2003) A time and space mortar method for coupling linear modal subdomains and non-linear subdomains in explicit structural dynamics. Comput Methods Appl Mech Eng 192(5):509–533

    Article  MATH  Google Scholar 

  38. Feng ZQ, Joli P, Cros JM, Magnain B (2005) The bi-potential method applied to the modeling of dynamic problems with friction. Comput Mech 36(5):375–383

    Article  MATH  Google Scholar 

  39. Fetecau R, Marsden JE, West M (2003) Variational multisymplectic formulations of nonsmooth continuum mechanics. In: Perspectives and problems in nolinear science, pp 229–261. Springer

  40. Fetecau RC, Marsden JE, Ortiz M, West M (2003) Nonsmooth Lagrangian mechanics and variational collision integrators. SIAM J Appl Dyn Syst 2(3):381–416

    Article  MathSciNet  MATH  Google Scholar 

  41. Géradin M, Rixen DJ (2014) Mechanical vibrations: theory and application to structural dynamics. Wiley, New York

    Google Scholar 

  42. Gravouil A, Combescure A (2001) Multi-time-step explicit–implicit method for non-linear structural dynamics. Int J Numer Methods Eng 50(1):199–225

    Article  MATH  Google Scholar 

  43. Gravouil A, Combescure A (2003) Multi-time-step and two-scale domain decomposition method for non-linear structural dynamics. Int J Numer Methods Eng 58(10):1545–1569

    Article  MATH  Google Scholar 

  44. Gravouil A, Combescure A, Brun M (2015) Heterogeneous asynchronous time integrators for computational structural dynamics. Int J Numer Methods Eng 102(3–4):202–232

    Article  MathSciNet  MATH  Google Scholar 

  45. Har J, Tamma K (2012) Advances in computational dynamics of particles, materials and structures. Wiley, Singapore

    Book  MATH  Google Scholar 

  46. Harmon D, Vouga E, Smith B, Tamstorf R, Grinspun E (2009) Asynchronous contact mechanics. ACM Trans Graph 28(3):87:1–87:12

    Article  MATH  Google Scholar 

  47. Hesch C, Betsch P (2009) A mortar method for energy-momentum conserving schemes in frictionless dynamic contact problems. Int J Numer Methods Eng 77(10):1468–1500

    Article  MathSciNet  MATH  Google Scholar 

  48. Hesch C, Betsch P (2011) Transient 3d contact problemsnts method: mixed methods and conserving integration. Comput Mech 48(4):437–449

    Article  MATH  Google Scholar 

  49. Hesch C, Betsch P (2011) Transient three-dimensional contact problems: mortar method. Mixed methods and conserving integration. Comput Mech 48(4):461–475

    Article  MATH  Google Scholar 

  50. Hughes TJ (2012) The finite element method: linear static and dynamic finite element analysis. Courier Corporation, Kendallville

    Google Scholar 

  51. Hughes TJ, Taylor RL, Sackman JL, Curnier A, Kanoknukulchai W (1976) A finite element method for a class of contact-impact problems. Comput Methods Appl Mech Eng 8(3):249–276

    Article  MATH  Google Scholar 

  52. Jean M (1999) The non-smooth contact dynamics method. Comput Methods Appl Mech Eng 177(3):235–257

    Article  MathSciNet  MATH  Google Scholar 

  53. Jourdan F, Alart P, Jean M (1998) A Gauss–Seidel like algorithm to solve frictional contact problems. Comput Methods Appl Mech Eng 155(1):31–47

    Article  MathSciNet  MATH  Google Scholar 

  54. Kane C, Marsden J, Ortiz M, West M (2000) Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems. Int J Numer Methods Eng 49:1295–1325

    Article  MathSciNet  MATH  Google Scholar 

  55. Kikuchi N, Oden JT (1988) Contact problems in elasticity: a study of variational inequalities and finite element methods. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  56. Konyukhov A, Schweizerhof K (2015) On some aspects for contact with rigid surfaces: surface-to-rigid surface and curves-to-rigid surface algorithms. Comput Methods Appl Mech Eng 283:74–105

    Article  MathSciNet  Google Scholar 

  57. Krenk S (2006) Energy conservation in Newmark based time integration algorithms. Comput Methods Appl Mech Eng 195(44):6110–6124

    Article  MathSciNet  MATH  Google Scholar 

  58. Laursen T, Chawla V (1997) Design of energy conserving algorithms for frictionless dynamic contact problems. Int J Numer Methods Eng 40(5):863–886

    Article  MathSciNet  MATH  Google Scholar 

  59. Laursen TA (2002) Computational contact and impact mechanics: fundamentals of modeling interfacial phenomena in nonlinear finite element analysis. Springer, Berlin

    MATH  Google Scholar 

  60. Leine RI, Aeberhard U, Glocker C (2009) Hamiltons principle as variational inequality for mechanical systems with impact. J Nonlinear Sci 19(6):633–664

    Article  MathSciNet  MATH  Google Scholar 

  61. Lemaitre J, Chaboche JL, Benallal A, Desmorat R (2009) Mécanique des Matériaux Solides–3eme édition. Dunod

  62. Lew A, Marsden J, Ortiz M, West M (2004) Variational time integrators. Int J Numer Methods Eng 60(1):153–212

    Article  MathSciNet  MATH  Google Scholar 

  63. Litewka P (2015) Frictional beam-to-beam multiple-point contact finite element. Comput Mech 56(2):243–264

    Article  MathSciNet  MATH  Google Scholar 

  64. Mahjoubi N (2010) Méthode générale de couplage de schéma d’intégration multiéchelle en temps en dynamique des structures. Ph.D. thesis, Institut National des Sciences Appliquées de Lyon

  65. Mahjoubi N, Gravouil A, Combescure A, Greffet N (2011) A monolithic energy conserving method to couple heterogeneous time integrators with incompatible time steps in structural dynamics. Comput Methods Appl Mech Eng 200(9):1069–1086

    Article  MATH  Google Scholar 

  66. Mahjoubi N, Krenk S (2010) Multi-time-step domain coupling method with energy control. Int J Numer Methods Eng 83(13):1700–1718

    Article  MathSciNet  MATH  Google Scholar 

  67. Marsden JE, West M (2001) Discrete mechanics and variational integrators. Acta Numer 2001(10):357–514

    Article  MathSciNet  MATH  Google Scholar 

  68. Meier C, Wall WA, Popp A (2017) A unified approach for beam-to-beam contact. Comput Methods Appl Mech Eng 315:972–1010

  69. Moreau JJ (1978) Approximation en graphe d’une évolution discontinue. RAIRO Anal Numer 12(1):75–84

    Article  MathSciNet  MATH  Google Scholar 

  70. Moreau JJ (1988) Unilateral contact and dry friction in finite freedom dynamics. In: Nonsmooth mechanics and applications, pp 1–82. Springer, Wien

  71. Moreau JJ (1999) Numerical aspects of the sweeping process. Comput Methods Appl Mech Eng 177(3):329–349

    Article  MathSciNet  MATH  Google Scholar 

  72. Moreau JJ (2003) Modélisation et simulation de matériaux granulaires. In: Actes du 35eme Congres National d’Analyse Numérique

  73. Neto AG, Pimenta PM, Wriggers P (2016) A master-surface to master-surface formulation for beam to beam contact. Part I: frictionless interaction. Comput Methods Appl Mech Eng 303:400–429

    Article  MathSciNet  Google Scholar 

  74. Raous M (1999) Quasistatic Signorini problem with Coulomb friction and coupling to adhesion. In: New developments in contact problems, pp 101–178. Springer, Wien

  75. Ryckman RA, Lew AJ (2012) An explicit asynchronous contact algorithm for elastic body-rigid wall interaction. Int J Numer Methods Eng 89(7):869–896

    Article  MathSciNet  MATH  Google Scholar 

  76. Schindler T, Acary V (2014) Timestepping schemes for nonsmooth dynamics based on discontinuous Galerkin methods: definition and outlook. Math Comput Simul 95:180–199

    Article  MathSciNet  Google Scholar 

  77. Simo J, Tarnow N (1992) The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics. Zeitschrift für angewandte Mathematik und Physik ZAMP 43(5):757–792

    Article  MathSciNet  MATH  Google Scholar 

  78. Simo JC, Laursen T (1992) An augmented Lagrangian treatment of contact problems involving friction. Comput Struct 42(1):97–116

    Article  MathSciNet  MATH  Google Scholar 

  79. Simo JC, Tarnow N, Wong K (1992) Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics. Comput Methods Appl Mech Eng 100(1):63–116

    Article  MathSciNet  MATH  Google Scholar 

  80. Stewart DE (1997) Existence of solutions to rigid body dynamics and the painlevé paradoxes. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics 325(6):689–693

    Article  MATH  Google Scholar 

  81. Stewart DE (1998) Convergence of a time-stepping scheme for rigid-body dynamics and resolution of painlevé’s problem. Arch Ration Mech Anal 145(3):215–260

  82. Taylor RL, Papadopoulos P (1993) On a finite element method for dynamic contact/impact problems. Int J Numer Methods Eng 36(12):2123–2140

    Article  MATH  Google Scholar 

  83. Wang D, Conti C, Beale D (1999) Interference impact analysis of multibody systems. J Mech Des 121(1):128–135

    Article  Google Scholar 

  84. Wriggers P (1999) Finite elements for thermomechanical contact and adaptive finite element analysis of contact problems. In: New developments in contact problems, pp 179–246. Springer, Wien

  85. Wu SC, Yang SM, Haug EJ (1986) Dynamics of mechanical systems with Coulomb friction, stiction, impact and constraint addition-deletion-II Planar systems. Mech Mach Theory 21(5):407–416

    Article  Google Scholar 

  86. Wu SR (2006) Lumped mass matrix in explicit finite element method for transient dynamics of elasticity. Comput Methods Appl Mech Eng 195(44):5983–5994

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We acknowledge the French technical center of mechanical industry (CETIM) for its partnership in this project initiated by the French crane industry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima-Ezzahra Fekak.

Appendices

Appendix 1: CD-Lagrange contact/impact algorithm

The implementation of the time integrator (47) is illustrated in the following flow-chart (Algorithm 2). For sake of simplicity, no contact searching procedure is used here, as we assume the p prospective contact points to be known. Thus, the \((p \times n)\) boolean contact operator \(\mathbf{L }_{c}\) is known at the beginning of the computation, where n is the number of DOFs of the problem. In this paper, this algorithm will be called CD-Lagrange time integrator.

figure b

Appendix 2: Discrete energy balance equation

1.1 Appendix 2.1: Explicit CD-Lagrange time integrator for contact/impact problems

In order to evaluate the energy properties of the proposed CD-Lagrange time integrator, we give the following discrete energy balance equation. It is obtained by multiplying the nonsmooth equation of motion (32) by \(\dot{\mathbf{U }}^{T}\).

$$\begin{aligned} d\left( \frac{1}{2}\dot{\mathbf{U }}^{T}\mathbf{M }\dot{\mathbf{U }}\right) = \dot{\mathbf{U }}^{T}\mathbf{F }dt + \dot{\mathbf{U }}^{T} d\mathbf{I } \end{aligned}$$
(75)

where (assuming that \(\mathbf{C }=0\) for sake of simplicity):

$$\begin{aligned} \mathbf{F } = \mathbf{F }_{{ ext}} - \mathbf{F }_{{ int}} \end{aligned}$$
(76)

Using the relation \(d\mathbf{U }=\dot{\mathbf{U }}dt\), we get the following energy balance:

$$\begin{aligned} d\left( \frac{1}{2}\dot{\mathbf{U }}^{T}\mathbf{M }\dot{\mathbf{U }}\right) = d\mathbf{U }^{T} \mathbf{F } + \dot{\mathbf{U }}^{T} d\mathbf{I } \end{aligned}$$
(77)

The term in the parenthesis on the left hand side is the kinetic energy, and the two terms on the right hand side are the rate of internal/external work and the contact/impact impulse work. The discrete form of the energy balance equation is obtained by expressing the increment of the kinetic energy over the time interval \([t_{n},t_{n+1}]\):

$$\begin{aligned} \Big [\frac{1}{2}\dot{\mathbf{U }}^{T}\mathbf{M }\dot{\mathbf{U }}\Big ]^{n+1}_{n} = \langle \dot{\mathbf{U }}_{n} \rangle ^{T} \mathbf{M } [\dot{\mathbf{U }}_{n}] \end{aligned}$$
(78)

The notations [.] and \(\langle . \rangle \) denote the increment and the mean value. They are defined as follows:

$$\begin{aligned} {[}X_n]= & {} (X_{n+1}-X_n) \end{aligned}$$
(79)
$$\begin{aligned} \langle X_n \rangle= & {} \frac{1}{2} (X_{n+1} + X_n) \end{aligned}$$
(80)

The path independent kinetic energy increment uses the expressions of means value \(\langle . \rangle \) and increment [.] (see Eq. (78)). For the CD time integrator, from Eq. (44a) and (44b), we obtain the following expressions in terms of mean values and increments:

$$\begin{aligned} {[}\dot{\mathbf{U }}_{n}]\,=\,&\langle \mathbf{W }_n \rangle \end{aligned}$$
(81a)
$$\begin{aligned} {[}\mathbf{U }_{n}]\,=\,&\varDelta t \langle \dot{\mathbf{U }}_{n} \rangle - \frac{\varDelta t }{4}[\mathbf{W }_n] \end{aligned}$$
(81b)

Combining (78) and (81a) involves:

$$\begin{aligned} \Big [\frac{1}{2}\dot{\mathbf{U }}^{T}\mathbf{M }\dot{\mathbf{U }}\Big ]^{n+1}_{n} = \varDelta t \langle \dot{\mathbf{U }}_{n} \rangle ^{T} \langle \mathbf F _{n} \rangle + \langle \dot{\mathbf{U }}_{n} \rangle ^{T} \langle \mathbf I _{n} \rangle \end{aligned}$$
(82)

From (81b) we obtain:

$$\begin{aligned} \Big [\frac{1}{2}\dot{\mathbf{U }}^{T}{} \mathbf M \dot{\mathbf{U }}\Big ]^{n+1}_{n}= & {} \displaystyle [\mathbf U _{n}]^{T} \langle \mathbf F _{n} \rangle + \frac{\varDelta t}{4} [\mathbf W _n]^{T} \langle \mathbf F _{n} \rangle + \frac{[\mathbf U _{n}]}{\varDelta t}^{T} \langle \mathbf I _{n} \rangle + \frac{1}{4} [\mathbf W _n]^{T} \langle \mathbf I _{n} \rangle \nonumber \\= & {} \displaystyle [\mathbf U _{n}]^{T} \langle \mathbf F _{n} \rangle + \frac{[\mathbf U _{n}]}{\varDelta t}^{T} \langle \mathbf I _{n} \rangle + \frac{1}{4} [\mathbf W _n]^{T}\Big (\varDelta t\langle \mathbf F _{n} \rangle + \langle \mathbf I _{n} \rangle \Big )\nonumber \\= & {} \displaystyle [\mathbf U _{n}]^{T} \langle \mathbf F _{n} \rangle + \frac{[\mathbf U _{n}]}{\varDelta t}^{T} \langle \mathbf I _{n} \rangle + \frac{1}{4} [\mathbf W _n]^{T} M \langle \mathbf W _{n} \rangle \end{aligned}$$
(83)

Then, the discretized energy balance can be written as follows:

$$\begin{aligned} \Big [\frac{1}{2}\dot{\mathbf{U }}^{T}{} \mathbf M \dot{\mathbf{U }} - \frac{1}{8} \mathbf W ^{T} \mathbf M \mathbf W \Big ]^{n+1}_{n} = [\mathbf U _{n}]^{T} \langle \mathbf F _{n} \rangle + \frac{[\mathbf U _{n}]}{\varDelta t}^{T} \langle \mathbf I _{n} \rangle \end{aligned}$$
(84)

which can also be denoted:

$$\begin{aligned} \varDelta W_{{ kin},n+1} + \varDelta W_{{ comp},n+1} +\varDelta W_{{ int},n+1} = \varDelta W_{{ ext},n+1} + \varDelta W_{IC,n+1} \end{aligned}$$
(85)

The expression of energies involved in the above balance energy are:

$$\begin{aligned}&\varDelta W_{{ kin},n+1} = \Big [\frac{1}{2}\dot{\mathbf{U }}^{T}{} \mathbf M \dot{\mathbf{U }} \Big ]^{n+1}_{n} \end{aligned}$$
(86)
$$\begin{aligned}&\varDelta W_{{ comp},n+1} = \Big [- \frac{1}{8} \mathbf W ^{T} \mathbf M \mathbf W \Big ]^{n+1}_{n} \end{aligned}$$
(87)
$$\begin{aligned}&\varDelta W_{{ ext},n+1} = [\mathbf U _{n}]^{T} \langle \mathbf F _{{ ext},n} \rangle \end{aligned}$$
(88)
$$\begin{aligned}&\varDelta W_{{ int},n+1} = [\mathbf U _{n}]^{T} \langle \mathbf F _{{ int},n} \rangle \end{aligned}$$
(89)
$$\begin{aligned}&\varDelta W_{IC,n+1} = \frac{[\mathbf U _{n}]}{\varDelta t}^{T} \langle \mathbf I _{n} \rangle \end{aligned}$$
(90)

and \(\varDelta W_{{ kin}}\), \(\varDelta W_{{ int}}\), \(\varDelta W_{{ comp}}\), \(\varDelta W_{{ ext}}\), \(\varDelta W_{IC}\) are, respectively, the increments over the time step of the kinetic, internal, complementary, external and impact/contact energies with explicit time integrator.

It can be noticed that the quantities inside bracket on the left hand side are path independent quantities (conservative quantities) (see [50]). The balance energy (85) corresponds to a generalization of the Newmark energy balance given in [57] to the case of contact/impact dynamics.

1.2 Appendix 2.2: Explicit–implicit HATI for contact/impact problems

In order to check the energy properties of the proposed explicit–implicit HATI, we recall the discrete energy balance equation between \(t_{0}\) and \(t_{m}\):

$$\begin{aligned}&\displaystyle \varDelta W^I_{{ kin},m} + \varDelta W^I_{{ int},m} \nonumber \\&\qquad +\,\sum _{j=1}^{m} \left( \varDelta W^E_{{ kin},j} + \varDelta W^E_{{ int},j} + \varDelta W^E_{{ comp},j}\right) = \varDelta W^I_{{ ext},m} \\&\qquad +\,\varDelta W^I_{D,m} + \sum _{j=1}^{m} (\varDelta W^E_{ext,j} + \varDelta W^E_{IC,j} + \varDelta W^E_{D,j}) \nonumber \\&\qquad +\, \varDelta W_{interface}\nonumber \end{aligned}$$
(91)

The expressions of the increments over a time step of the kinetic \(\varDelta W_{{ kin}}\), internal \(\varDelta W_{{ int}}\), complementary \(\varDelta W_{{ comp}}\), external \(\varDelta W_{{ ext}}\) and impact/contact \(\varDelta W_{IC}\) energies are given, respectively, in Eqs. (86), (89), (87), (88) and (90). In addition, the definitions of the additional energy terms are given below:

$$\begin{aligned}&\varDelta W^k_{D,e} = [\mathbf U ^{k}_{e}]^{T} \langle \mathbf F ^{k}_{D,e} \rangle \ ; \quad e= 0, (j-1); \ k=I, E \end{aligned}$$
(92)
$$\begin{aligned}&\varDelta W_{{ interface}} = [\mathbf U ^{I}_0]^T (L^{I}_{G})^{T} [\varvec{\varLambda }_{G,0}] + \sum _{j=0}^{m-1} [\mathbf U ^{E}_{j}]^T (L^{E}_{G})^T [\varvec{\varLambda }_{G,j}] \end{aligned}$$
(93)

Appendix 3: Time error indicator

In contact dynamics, due to velocity discontinuities, the convergence cannot be observed using uniform norm as demonstrated in [2]. For this reason, Moreau [69] introduced the convergence in the sense of filled-in-graph using the Hausdorff distance to measure the error with respect to a reference solution. It is shown in [2] that an equivalent absolute \(l_1\)-norm gives the same order of convergence as the Hausdorff norm and can be used thanks to its easy implementation. For this purpose, we introduce the relative error indicator as follows:

$$\begin{aligned} e_f = \frac{\displaystyle \varDelta t \sum _{i=1}^{N} |f_i - f(t_i)|}{\displaystyle \varDelta t\sum _{i=1}^{N}|f(t_i)|} = \frac{\displaystyle \sum _{i=1}^{N} |f_i - f(t_i)|}{\displaystyle \sum _{i=1}^{N}|f(t_i)|} \end{aligned}$$
(94)

where N is the number of time steps in the time interval [0, T], \(f_i\) the numerical results and \(f(t_i)\) is the reference results at time \(t_i\). f indicates generalized coordinate, displacement or velocity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fekak, FE., Brun, M., Gravouil, A. et al. A new heterogeneous asynchronous explicit–implicit time integrator for nonsmooth dynamics. Comput Mech 60, 1–21 (2017). https://doi.org/10.1007/s00466-017-1397-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1397-0

Keywords

Navigation