Skip to main content
Log in

Carbon nanotube thin film strain sensor models assembled using nano- and micro-scale imaging

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Nanomaterial-based thin films, particularly those based on carbon nanotubes (CNT), have brought forth tremendous opportunities for designing next-generation strain sensors. However, their strain sensing properties can vary depending on fabrication method, post-processing treatment, and types of CNTs and polymers employed. The objective of this study was to derive a CNT-based thin film strain sensor model using inputs from nano-/micro-scale experimental measurements of nanotube physical properties. This study began with fabricating ultra-low-concentration CNT-polymer thin films, followed by imaging them using atomic force microscopy. Image processing was employed for characterizing CNT dispersed shapes, lengths, and other physical attributes, and results were used for building five different types of thin film percolation-based models. Numerical simulations were conducted to assess how the morphology of dispersed CNTs in its 2D matrix affected bulk film electrical and electromechanical (strain sensing) properties. The simulation results showed that CNT morphology had a significant impact on strain sensing performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Farrar CR, Worden K (2007) An introduction to structural health monitoring. Philos Trans R Soc A Lond 365(1851):303–315. doi:10.1098/rsta.2006.1928

  2. Knite M, Teteris V, Kiploka A, Kaupuzs J (2004) Polyisoprene-carbon black nanocomposites as tensile strain and pressure sensor materials. Sens Actuators A Phys 110:142–149. doi:10.1016/j.sna.2003.08.006

    Article  Google Scholar 

  3. Loh KJ, Kim J, Lynch JP, Kam NWS, Kotov NA (2007) Multifunctional layer-by-layer carbon nanotube–polyelectrolyte thin films for strain and corrosion sensing. Smart Mater Struct 16:429. doi:10.1088/0964-1726/16/2/022

    Article  Google Scholar 

  4. Bae S-H, Lee Y, Sharma BK, Lee H-J, Kim J-H, Ahn J-H (2013) Graphene-based transparent strain sensor. Carbon 51:236–242. doi:10.1016/j.carbon.2012.08.048

    Article  Google Scholar 

  5. Lee J, Kim S, Lee J, Yang D, Park BC, Ryu S, Park I (2014) A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection. Nanoscale 6:11932–11939. doi:10.1039/C4NR03295K

    Article  Google Scholar 

  6. Maia F, Tedim J, Bastos AC, Ferreira MGS, Zheludkevich ML (2013) Nanocontainer-based corrosion sensing coating. Nanotechnology 24:415502. doi:10.1088/0957-4484/24/41/415502

    Article  Google Scholar 

  7. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. doi:10.1038/354056a0

    Article  Google Scholar 

  8. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297:787–792. doi:10.1126/science.1060928

    Article  Google Scholar 

  9. Stampfer C, Jungen A, Linderman R, Obergfell D, Roth S, Hierold C (2006) Nano-electromechanical displacement sensing based on single-walled carbon nanotubes. Nano Lett 6:1449–1453. doi:10.1021/nl0606527

    Article  Google Scholar 

  10. Dharap P, Li Z, Nagarajaiah S, Barrera EV (2004) Nanotube film based on single-wall carbon nanotubes for strain sensing. Nanotechnology 15:379–382. doi:10.1088/0957-4484/15/3/026

    Article  Google Scholar 

  11. Pham GT, Park Y-B, Liang Z, Zhang C, Wang B (2008) Processing and modeling of conductive thermoplastic/carbon nanotube films for strain sensing. Compos B 39:209–216. doi:10.1016/j.compositesb.2007.02.024

    Article  Google Scholar 

  12. Loyola BR, Zhao Y, Loh KJ, La Saponara V (2013) The electrical response of carbon nanotube-based thin film sensors subjected to mechanical and environmental effects. Smart Mater Struct 22:025010. doi:10.1088/0964-1726/22/2/025010

    Article  Google Scholar 

  13. Gupta S, Gonzalez JG, Loh KJ (2016) Self-sensing concrete enabled by nano-engineered cement-aggregate interfaces. Struct Health Monit. doi:10.1177/1475921716643867

    Google Scholar 

  14. Behnam A, Ural A (2007) Computational study of geometry-dependent resistivity scaling in single-walled carbon nanotube films. Phys Rev B 75:125432. doi:10.1103/PhysRevB.75.125432

    Article  Google Scholar 

  15. Bao WS, Meguid SA, Zhu ZH, Weng GJ (2012) Tunneling resistance and its effect on the electrical conductivity of carbon nanotube nanocomposites. J Appl Phys 111:093726. doi:10.1063/1.4716010

    Article  Google Scholar 

  16. Hu N, Karube Y, Yan C, Masuda Z, Fukunaga H (2008) Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Mater 56:2929–2936. doi:10.1016/j.actamat.2008.02.030

    Article  Google Scholar 

  17. Rahman R, Servati P (2012) Effects of inter-tube distance and alignment on tunnelling resistance and strain sensitivity of nanotube/polymer composite films. Nanotechnology 23:055703. doi:10.1088/0957-4484/23/5/055703

    Article  Google Scholar 

  18. Lee BM, Loh KJ (2015) A 2D percolation-based model for characterizing the piezoresistivity of carbon nanotube-based films. J Mater Sci 50:2973–2983. doi:10.1007/s10853-015-8862-y

    Article  Google Scholar 

  19. Hu N, Karube Y, Arai M, Watanabe T, Yan C, Li Y, Liu Y, Fukunaga H (2010) Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor. Carbon 48:680–687. doi:10.1016/j.carbon.2009.10.012

    Article  Google Scholar 

  20. Lee BM, Wang L, Loh KJ (2015) Characterization of carbon nanotube strain sensors using experimental tests and percolation modeling. In: Proceedings of the 10th international workshop on structural health monitoring, September 1–3. Stanford, CA. doi:10.12783/SHM2015/271

  21. Amini A, Bahreyni B (2012) Behavioral model for electrical response and strain sensitivity of nanotube-based nanocomposite materials. J Vac Sci Technol B 30:022001. doi:10.1116/1.3691654

    Article  Google Scholar 

  22. Yin G, Hu N, Karube Y, Liu Y, Li Y, Fukunaga H (2011) A carbon nanotube/polymer strain sensor with linear and anti-symmetric piezoresistivity. J Compos Mater 45:1315–1323. doi:10.1177/0021998310393296

    Article  Google Scholar 

  23. Gommes C, Blacher S, Masenelli-Varlot K, Bossuot C, McRae E, Fonseca A, Nagy JB, Pirard JP (2003) Image analysis characterization of multi-walled carbon nanotubes. Carbon 41:2561–2572. doi:10.1016/S0008-6223(03)00375-0

  24. Tenent RC, Barnes TM, Bergeson JD, Ferguson AJ, To B, Gedvilas LM, Heben MJ, Blackburn JL (2009) Ultrasmooth, large-area, high-uniformity, conductive transparent single-walled-carbon-nanotube films for photovoltaics produced by ultrasonic spraying. Adv Mater 21:3210–3216. doi:10.1002/adma.200803551

  25. Timmermans MY, Estrada D, Nasibulin AG, Wood JD, Behnam A, D-m Sun, Ohno Y, Lyding JW, Hassanien A, Pop E, Kauppinen EI (2012) Effect of carbon nanotube network morphology on thin film transistor performance. Nano Res 5:307–319. doi:10.1007/s12274-012-0211-8

    Article  Google Scholar 

  26. McEuen PL, Park J-Y (2004) Electron transport in single-walled carbon nanotubes. MRS Bull 29:272–275. doi:10.1557/mrs2004.79

    Article  Google Scholar 

  27. Fuhrer MS, Lim AKL, Shih L, Varadarajan U, Zettl A, McEuen PL (2000) Transport through crossed nanotubes. Phys E 6:868–871. doi:10.1016/S1386-9477(99)00228-3

    Article  Google Scholar 

  28. Bandaru PR (2007) Electrical properties and applications of carbon nanotube structures. J Nanosci Nanotechnol 7:1239–1267. doi:10.1166/jnn.2007.307

    Article  Google Scholar 

  29. Wang L, Loh KJ, Brely L, Bosia F, Pugno NM (2016) An experimental and numerical study on the mechanical properties of carbon nanotube-latex thin films. J Eur Ceram Soc 36:2255–2262. doi:10.1016/j.jeurceramsoc.2015.12.052

    Article  Google Scholar 

  30. Cao J, Wang Q, Dai H (2003) Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching. Phys Rev Lett 90:157601. doi:10.1103/PhysRevLett.90.157601

  31. Zeng X, Xu X, Shenai PM, Kovalev E, Baudot C, Mathews N, Zhao Y (2011) Characteristics of the electrical percolation in carbon nanotubes/polymer nanocomposites. J Phys Chem C 115:21685–21690. doi:10.1021/jp207388n

    Article  Google Scholar 

  32. Li C, Thostenson ET, Chou T-W (2008) Effect of nanotube waviness on the electrical conductivity of carbon nanotube-based composites. Compos Sci Technol 68:1445–1452. doi:10.1016/j.compscitech.2007.10.056

    Article  Google Scholar 

  33. Li C, Chou T-W (2007) Continuum percolation of nanocomposites with fillers of arbitrary shapes. Appl Phys Lett 90:174108. doi:10.1063/1.2732201

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the US National Science Foundation (NSF) Faculty Early Career Development (CAREER) Program under Grant Number CMMI-1253564. Additional support was provided by the Jacobs School of Engineering, University of California-San Diego.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth J. Loh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, B.M., Loh, K.J. & Yang, YS. Carbon nanotube thin film strain sensor models assembled using nano- and micro-scale imaging. Comput Mech 60, 39–49 (2017). https://doi.org/10.1007/s00466-017-1391-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1391-6

Keywords

Navigation