Skip to main content
Log in

An effective meshfree reproducing kernel method for buckling analysis of cylindrical shells with and without cutouts

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The paper is concerned with eigen buckling analysis of curvilinear shells with and without cutouts by an effective meshfree method. In particular, shallow shell, cylinder and perforated cylinder buckling problems are considered. A Galerkin meshfree reproducing kernel (RK) approach is then developed. The present meshfree curvilinear shell model is based on Reissner-Mindlin plate formulation, which allows the transverse shear deformation of the curved shells. There are five degrees of freedom per node (i.e., three displacements and two rotations). In this setting, the meshfree interpolation functions are derived from the RK. A singular kernel is introduced to impose the essential boundary conditions because of the RK shape functions, which do not automatically possess the Kronecker delta property. The stiffness matrix is derived using the stabilized conforming nodal integration technique. A convected coordinate system is introduced into the formulation to deal with the curvilinear surface. More importantly, the RKs taken here are used not only for the interpolation of the curved geometry, but also for the approximation of field variables. Several numerical examples with shallow shells and full cylinder models are considered, and the critical buckling loads and their buckling mode shapes are calculated by the meshfree eigenvalue analysis and examined. To show the accuracy and performance of the developed meshfree method, the computed critical buckling loads and mode shapes are compared with reference solutions based on boundary domain element, finite element and analytical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Guggenberger W (1995) Buckling and postbuckling of imperfect cylindrical shells under external pressure. Thin Walled Struct 23:351–366

    Article  Google Scholar 

  2. Jullien JF, Limam A (1998) Effects of openings of the buckling of cylindrical shells subjected to axial compression. Thin Walled Struct 31:187–202

    Article  Google Scholar 

  3. Yeh MK, Lin MC, Wu WT (1999) Bending buckling of an elastoplastic cylindrical shell with a cutout. Eng Struct 21:996–1005

    Article  Google Scholar 

  4. Hilburger MW, Britt VO, Nemeth MP (2001) Buckling behavior of compression-loaded quasi-isotropic curved panels with a circular cutout. Int J Solid Struct 38:1495–1522

    Article  MATH  Google Scholar 

  5. Hilburger MW, Starnes JH Jr (2005) Buckling behavior of compression-loaded composite cylindrical shells with reinforced cutouts. Int J Non Lin Mech 40:1005–1021

    Article  MATH  Google Scholar 

  6. Han H, Cheng J, Taheri F, Pegg N (2006) Numerical and experimental investigations of the response of aluminum cylinders with a cutout subject to axial compression. Thin Walled Struct 44:254–270

    Article  Google Scholar 

  7. Shariati M, Rokhi MM (2008) Numerical and experimental investigations on buckling of steel cylindrical shells with elliptical cutout subject to axial compression. Thin Walled Struct 46:1251–1261

    Article  Google Scholar 

  8. Kobayashi T, Mihara Y, Fujii F (2012) Path-tracing analysis for post-buckling process of elastic cylindrical shells under axial compression. Thin Walled Struct 61:180–187

    Article  Google Scholar 

  9. Fujikubo M, Harada M, Yao T, Khedmati MR, Yanagihara D (2005) Estimation of ultimate strength of continuous stiffened panel under combined transverse thrust and lateral pressure Part 2: Continuous stiffened panel. Mar Struct 18:411–427

    Article  Google Scholar 

  10. Xu MC, Yanagihara D, Fujikubo M, Soares CG (2013) Influence of boundary conditions on the collapse behaviour of stiffened panels under combined loads. Mar Struct 34:205–225

    Article  Google Scholar 

  11. Tanaka S, Yanagihara D, Yasuoka A, Harada M, Okazawa S, Fujikubo M, Yao T (2014) Evaluation of ultimate strength of stiffened panels under longitudinal thrust. Mar Struct 36:21–50

    Article  Google Scholar 

  12. Bayatfar A, Khedmati MR, Rigo P (2014) Residual ultimate strength of cracked steel unstiffened and stiffened plates under longitudinal compression. Thin Walled Struct 84:378–392

    Article  Google Scholar 

  13. Tekgoz M, Garbatov Y, Soares CG (2015) Ultimate strength assessment of welded stiffened plates. Eng Struct 84:325–339

    Article  Google Scholar 

  14. Pei Z, Iijima K, Fujikubo M, Tanaka S, Okazawa S, Yao T (2015) Simulation on progressive collapse behaviour of whole ship model under extreme waves using idealized structural unit method. Mar Struct 40:104–133

    Article  Google Scholar 

  15. Yao T, Fujikubo M (2016) Buckling and ultimate strength of ship and ship-like floating structures, 1st edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  16. Bathe KJ (1996) Finite element procedures. Prentice-Hall, Inc, Upper Saddle River

    MATH  Google Scholar 

  17. Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, Hoboken

    MATH  Google Scholar 

  18. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37:229–256

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluid 20:1081–1106

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu WK, Jun S, Li S, Adee J, Belytschko T (1995) Reproducing kernel particle methods for structural dynamics. Int J Numer Methods Eng 38:1655–1679

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen JS, Pan C, Wu CT, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput Methods Appl Mech Eng 139:195–227

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen JS, Pan C, Wu CT (1997) Large deformation analysis of rubber based on a reproducing kernel particle method. Comput Mech 19:211–227

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang D, Chen P (2014) Quasi-convex reproducing kernel meshfree method. Comput Mech 54:689–709

    Article  MathSciNet  MATH  Google Scholar 

  24. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195

    Article  MathSciNet  MATH  Google Scholar 

  25. Bui QT (2015) Extended isogeometric dynamic and static fracture analysis for cracks in piezoelectric materials using NURBS. Comput Methods Appl Mech Eng 295:470–509

    Article  MathSciNet  Google Scholar 

  26. Yu T, Yin S, Bui QT, Xia S, Tanaka S, Hirose S (2016) NURBS-based isogeometric analysis of buckling and free vibration problems for laminated composites plates with complicated cutouts using a new simple FSDT theory and level set method. Thin Walled Struct 101:141–156

    Article  Google Scholar 

  27. Yu T, Bui QT, Yin S, Doan DH, Wu CT, Do TV, Tanaka S (2016) On the thermal buckling analysis of functionally graded plates with internal defects using extended isogeometric analysis. Compos Struct 136:684–695

    Article  Google Scholar 

  28. Yin S, Yu T, Bui QT, Zheng X, Tanaka S (2016) In-plane material inhomogeneity of functionally graded plates: A higher-order shear deformation plate isogeometric analysis. Compos B Eng 106:273–284

    Article  Google Scholar 

  29. Tanaka S, Okada H, Okazawa S (2012) A wavelet Galerkin method employing B-spline bases for solid mechanics problems without the use of a fictitious domain. Comput Mech 50:35–48

    Article  MathSciNet  MATH  Google Scholar 

  30. Tanaka S, Okada H, Okazawa S, Fujikubo M (2013) Fracture mechanics analysis using the wavelet Galerkin method and extended finite element method. Int J Numer Methods Eng 93:1082–1108

    Article  MathSciNet  MATH  Google Scholar 

  31. Tanaka S, Suzuki H, Ueda S, Sannomaru S (2015) An extended wavelet Galerkin method with a high-order B-spline for 2D crack problems. Acta Mech 226:2159–2175

    Article  MathSciNet  MATH  Google Scholar 

  32. Tanaka S, Sannomaru S, Imachi M, Hagihara S, Okazawa S, Okada H (2015) Analysis of dynamic stress concentration problems employing spline-based wavelet Galerkin method. Eng Anal Bound Elem 58:129–139

    Article  MathSciNet  Google Scholar 

  33. Sannomaru S, Tanaka S, Yoshida K, Bui QT, Okazawa S, Hagihara S (2016) Treatment of Drichlet-type boundary conditions in the spline-based wavelet Galerkin method employing multiple point constraints. Appl Math Model 43:592–610

    Article  Google Scholar 

  34. Krysl P, Belytschko T (1995) Analysis of thin plates by the element-free Galerkin method. Comput Mech 17:26–35

    Article  MathSciNet  MATH  Google Scholar 

  35. Krysl P, Belytschko T (1996) Analysis of thin shells by the element-free Galerkin method. Int J Solid Struct 33:3057–3080

    Article  MATH  Google Scholar 

  36. Li S, Hao W, Liu WK (2000) Numerical simulations of large deformation of thin shell structures using meshfree methods. Comput Mech 23:102–116

    Article  MATH  Google Scholar 

  37. Noguchi H, Kawashima T, Miyamura T (2000) Element free analyses of shell and spatial structures. Int J Numer Meth Eng 47:1215–1240

    Article  MATH  Google Scholar 

  38. Kanok-Nukulchai W, Barry W, Saran-Yasoontorn K, Bouillard PH (2001) On elimination of shear locking in the element-free Galerkin method. Int J Numer Methods Eng 52:705–725

    Article  MATH  Google Scholar 

  39. Zhang Z, Noguchi H, Chen JS (2008) Moving least-squares approximation with discontinuous derivative basis functions for shell structures with slope discontinuities. Int J Numer Methods Eng 76:1202–1230

    Article  MathSciNet  MATH  Google Scholar 

  40. Tanaka S, Suzuki H, Sadamoto S, Imachi M, Bui QT (2015) Analysis of cracked shear deformable plates by an effective meshfree plate formulation. Eng Fract Mech 144:142–157

    Article  Google Scholar 

  41. Tanaka S, Suzuki H, Sadamoto S, Sannomaru S, Yu T, Bui QT (2016) \(J\)-integral evaluation for 2D mixed-mode crack problems employing a meshfree stabilized conforming nodal integraiton method. Comput Mech 58:185–198

    Article  MathSciNet  MATH  Google Scholar 

  42. Tanaka S, Suzuki H, Sadamoto S, Okazawa S, Yu TT, Bui QT (2017) Accurate evaluation of mixed-mode intensity factors of cracked shear-deformable plates by an enriched meshfree Galerkin formulation. Arch Appl Mech 87:279–298

  43. Organ D, Fleming M, Terry T, Belytschko T (1996) Continuous meshless approximations for nonconvex bodies by diffraction and transparency. Comput Mech 18:225–235

    Article  MATH  Google Scholar 

  44. Krysl P, Belytschko T (1997) Element-free Galerkin method: Convergence of the continuous and discontinuous shape functions. Comput Meth Appl Mech Eng 148:257–277

    Article  MathSciNet  MATH  Google Scholar 

  45. Yiotis AJ, Katsikadelis JT (2015) Buckling of cylindrical shell panels: a MAEM solution. Arch Appl Mech 85:1545–1557

    Article  MATH  Google Scholar 

  46. Wang D, Song C, Peng H (2015) A circumferentially enhanced Hermite reproducing kernel meshfree method for buckling analysis of Kirchhoff-Love cylindrical shells. Int J Struct Stab Dyn 15:1450090

    Article  MathSciNet  MATH  Google Scholar 

  47. Wang D, Chen JS (2008) A Hermite reproducing kernel approximation for thin-plate analysis with sub-domain stabilized conforming integration. Int J Numer Methods Eng 74:368–390

    Article  MATH  Google Scholar 

  48. Wang D, Lin Z (2010) Free vibration analysis of thin plates using Hermite reproducing kernel Galerkin meshfree method with sub-domain stabilized conforming integration. Comput Mech 46:703–719

    Article  MathSciNet  MATH  Google Scholar 

  49. Wang D, Lin Z (2011) Dispersion and transient analyses of Hermite reproducing kernel Galerkin meshfree method with sub-domain stabilized conforming integration for thin beam and plate structures. Comput Mech 48:47–63

    Article  MathSciNet  MATH  Google Scholar 

  50. Tanaka S, Sadamoto S, Okazawa S (2012) Large deflection analysis for thin plates using the Hermite reproducing kernel (HRK) approximation. Theor Appl Mech Jpn 60:205–214

    Google Scholar 

  51. Tanaka S, Sadamoto S, Okazawa S (2012) Nonlinear thin-plate bending analyses using the Hermite reproducing kernel approximation. Int J Comput Meth 9:1240012

    Article  MathSciNet  MATH  Google Scholar 

  52. Qian D, Eason T, Li S, Liu WK (2008) Meshfree simulation of failure modes in thin cylinders subjected to combined loads of internal pressure and localized heat. Int J Numer Meth Eng 76:1159–1184

    Article  MATH  Google Scholar 

  53. Zhao X, Liew KM, Ng TY (2003) Vibration analysis of laminated composite cylindrical panels via a meshfree approach. Int J Solids Struct 40:161–180

    Article  MATH  Google Scholar 

  54. Zhao X, Ng TY, Liew KM (2004) Free vibration of two-side simply-supported laminated cylindrical panels via the mesh-free kp-Ritz method. Int J Mech Sci 46:123–142

    Article  MATH  Google Scholar 

  55. Sadamoto S, Tanaka S, Okazawa S (2013) Elastic large deflection analysis of plates subjected to uniaxial thrust using meshfree Mindlin-Reissner formulation. Comput Mech 52:1313–1330

    Article  MathSciNet  MATH  Google Scholar 

  56. Sadamoto S, Tanaka S, Okazawa S (2014) Buckling analysis of plate with an initial imperfection using RKPM based on convected coordinate system. J JASNAOE 19:169–178 (in Japanese)

    Article  Google Scholar 

  57. Sadamoto S, Yoshida K, Tanaka S (2015) Modeling of plate structures for Galerkin meshfree methods (2nd report: Geometrical non-linear analysis). Trans JSME 81:15–00252 (in Japanese)

    Google Scholar 

  58. Chen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 50:435–466

  59. Chen JS, Yoon S, Wu CT (2002) Non-linear version of stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 53:2587–2615

  60. Chen JS, Wang HP (2000) New boundary condition treatments in meshfree computation of contact problems. Comput Meth Appl Mech Eng 187:441–468

    Article  MathSciNet  MATH  Google Scholar 

  61. Wang D, Sun Y (2011) A Galerkin meshfree method with stabilized conforming nodal integration for geometrically nonlinear analysis of shear deformable plates. Int J Comput Methods 8:685

    Article  MathSciNet  MATH  Google Scholar 

  62. Wang D, Chen JS (2004) Locking-free stabilized conforming nodal integration for meshfree Mindlin-Reissner plate formulation. Comput Methods Appl Mech Eng 193:1065–1083

    Article  MATH  Google Scholar 

  63. Wang D, Chen JS (2006) A locking-free meshfree curved beam formulation with the stabilized conforming nodal integration. Comput Mech 39:83–90

    Article  MATH  Google Scholar 

  64. Sadamoto S, Tanaka S, Okazawa S (2013) A study for numerical integration technique of plate bending analysis employing meshfree approach. Transactions of JSCES Paper No. 20130008 (in Japanese)

  65. ANSYS (2013), User’s manual release 14.5

  66. Baiz PM, Aliabadi MH (2006) Linear buckling analysis of shear deformable shallow shells by the boundary domain element method. Comput Model Eng Sci 13:19–34

    MathSciNet  MATH  Google Scholar 

  67. Baiz PM, Aliabadi MH (2007) Buckling analysis of shear deformable shallow shells by the boundary element method. Eng Anal Bound Elem 31:361–372

    Article  MATH  Google Scholar 

  68. Gerard G, Becker H (1957) Handbook of structural stability part III-buckling of curved plates and shells. NACA TN 3783

  69. Marcinowski J (2010) Buckling resistance assessment of a slender cylindrical shell axially compressed. Mech Mech Eng 14:309–316

    Google Scholar 

  70. Eggwertz S, Samuelson LA (1991) Design of shell structures with openings subjected to buckling. J Constr Steel Res 18:155–163

    Article  Google Scholar 

  71. Joyot P, Trunzler J, Chinesta F (2005) Enriched reproducing kernel approxiation: Reproducing functions with discontinuous derivatives. Comput Sci Eng 43:93–107

    MATH  Google Scholar 

Download references

Acknowledgements

The second author was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) under 2214-A International Doctoral Research Fellowship Programme (1059B141500898), and it is gratefully acknowledged. This research was partially supported by JSPS KAKENHI Grant-in-Aid for Scientific Research of (15H02328), (16H04603), (15K06632).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Tanaka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadamoto, S., Ozdemir, M., Tanaka, S. et al. An effective meshfree reproducing kernel method for buckling analysis of cylindrical shells with and without cutouts. Comput Mech 59, 919–932 (2017). https://doi.org/10.1007/s00466-017-1384-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1384-5

Keywords

Navigation