Skip to main content
Log in

A dynamic mesh refinement technique for Lattice Boltzmann simulations on octree-like grids

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this contribution, we present our new adaptive Lattice Boltzmann implementation within the Peano framework, with special focus on nanoscale particle transport problems. With the continuum hypothesis not holding anymore on these small scales, new physical effects—such as Brownian fluctuations—need to be incorporated. We explain the overall layout of the application, including memory layout and access, and shortly review the adaptive algorithm. The scheme is validated by different benchmark computations in two and three dimensions. An extension to dynamically changing grids and a spatially adaptive approach to fluctuating hydrodynamics, allowing for the thermalisation of the fluid in particular regions of interest, is proposed. Both dynamic adaptivity and adaptive fluctuating hydrodynamics are validated separately in simulations of particle transport problems. The application of this scheme to an oscillating particle in a nanopore illustrates the importance of Brownian fluctuations in such setups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adhikari R, Stratford K, Cates ME, Wagner AJ (2005) Fluctuating lattice Boltzmann. Europhys Lett 71: 473–479

    Article  Google Scholar 

  2. Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys Rev 94: 511–525

    Article  MATH  Google Scholar 

  3. Box GEP, Muller ME (1958) A note on the generation of random normal deviates. Ann Math Stat 29(2): 610–611

    Article  MATH  Google Scholar 

  4. Brenk M, Bungartz H-J, Mehl M, Muntean IL, Neckel T, Daubner K (2008) An Eulerian approach for partitioned fluid–structure simulations on Cartesian grids. Comput Mech 43(1): 115–124

    Article  MATH  Google Scholar 

  5. Brenk M, Bungartz H-J, Mehl M, Muntean IL, Neckel T, Weinzierl T (2008) Numerical simulation of particle transport in a drift ratchet. SIAM J Sci Comput 30(6): 2777–2798

    Article  MathSciNet  MATH  Google Scholar 

  6. Bungartz H-J, Mehl M, Neckel T, Weinzierl T (2010) The PDE framework Peano applied to fluid dynamics: an efficient implementation of a parallel multiscale fluid dynamics solver on octree-like adaptive Cartesian grids. Comput Mech 46(1): 103–114

    Article  MathSciNet  MATH  Google Scholar 

  7. Bungartz H-J, Benk J, Gatzhammer B, Mehl M, Neckel T (2010) Partitioned simulation of fluid–structure interaction on Cartesian grids. Lect Notes Comput Sci Eng 73: 255–284

    Article  Google Scholar 

  8. Bungartz H-J, Gatzhammer B, Lieb M, Mehl M, Neckel T (2011) Towards multi-phase flow simulations in the PDE framework Peano. Comput Mech 48(3): 365–376

    Article  MathSciNet  MATH  Google Scholar 

  9. Chapman S, Cowling TG (1970) The mathematical theory of nonuniform gases. Cambridge University Press, London

    Google Scholar 

  10. Chen H (1998) Volumetric formulation of the lattice Boltzmann method for fluid dynamics: Basic concept. Phys Rev E 58(3): 3955–3963

    Article  Google Scholar 

  11. Chen H, Filippova O, Hoch J, Molvig K, Shock R, Teixeira C, Zhang R (2006) Grid refinement in lattice Boltzmann methods based on volumetric formulation. Physica A 362: 158–167

    Article  Google Scholar 

  12. D’Humières D, Ginzburg I, Krafczyk M, Lallemand P, Luo L-S (2002) Multiple-relaxation-time lattice Boltzmann models in three dimensions. Philos Trans R Soc Lond A 360: 437–451

    Article  MATH  Google Scholar 

  13. Donev A, Vanden-Eijnden E, Garcia AL, Bell JB (2009) On the accuracy of finite-volume schemes for fluctuating hydrodynamics, ArXiv e-prints, eprint 0906.2425. http://adsabs.harvard.edu/abs/2009arXiv0906.2425D

  14. Dünweg B, Schiller UD, Ladd AJ (2007) Statistical mechanics of the fluctuating lattice Boltzmann equation. Phys Rev E 76: 036704

    Article  MathSciNet  Google Scholar 

  15. Dupuis A, Kotsalis EM, Koumoutsakos P (2007) Coupling lattice Boltzmann and molecular dynamics models for dense fluids. Phys Rev E 75: 046704

    Article  Google Scholar 

  16. Feichtinger C, Donath S, Köstler H, Götz J, Rüde U (2011) WaLBerla: HPC software design for computational engineering simulations. J Comput Sci 2(2): 105–112

    Article  Google Scholar 

  17. Filippova O, Hänel D (1998) Grid refinement for lattice-BGK models. J Comput Phys 147: 219–228

    Article  MATH  Google Scholar 

  18. Fyta M, Melchionna S, Kaxiras E, Succi S (2998) Multiscale coupling of molecular dynamics and hydrodynamics: application to DNA translocation through a nanopore. Multiscale Model Simul 5(4): 1156–1173

    Article  MathSciNet  Google Scholar 

  19. Ginzbourg I, Adler PM (1994) Boundary flow condition analysis for the three-dimensional lattice Boltzmann model. J Phys II 4(2): 191–214

    Article  Google Scholar 

  20. Ginzburg I, Verhaeghe F, d’Humières D (2008) Two-relaxation-time lattice Boltzmann scheme: about parametrization, velocity, pressure and mixed boundary conditions. Commun Comput Phys 3(2): 427–478

    MathSciNet  Google Scholar 

  21. Ghia U, Ghia KN, Shin CT (1982) High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J Comput Phys 48: 387–411

    Article  MATH  Google Scholar 

  22. Gradon L, Yu CP (1989) Diffusional particle deposition in the human nose and mouth. Aerosol Sci Technol 11(3): 213–220

    Article  Google Scholar 

  23. Hänggi P, Marchesoni F (2009) Artificial Brownian motors: controlling transport on the nanoscale. Rev Mod Phys 81(1): 387–442

    Article  Google Scholar 

  24. He X, Doolen D (1997) Lattice Boltzmann method on curvilinear coordinates systems: flow around a circular cylinder. J Comput Phys 134: 306–315

    Article  MATH  Google Scholar 

  25. Hoogerbrugge PJ, Koelman JMVA (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett 19(3): 155–160

    Article  Google Scholar 

  26. Iglberger K, Thürey N, Rüde U (2008) Simulation of moving particles in 3D with the Lattice Boltzmann method. Comput Math Appl 55(7): 1461–1468

    Article  MathSciNet  MATH  Google Scholar 

  27. Körner C, Thies M, Hofmann T, Thürey N, Rüde U (2005) Lattice Boltzmann model for free surface flow for modeling foaming. J Stat Phys 121(1/2): 179–196

    Article  MathSciNet  MATH  Google Scholar 

  28. Ladd AJC (1994) Numerical simulations of particulate suspensions via a discretized Boltzmann equation part I. Theoretical foundation. J Fluid Mech 271: 285–309

    Article  MathSciNet  MATH  Google Scholar 

  29. Ladd AJC (1994) Numerical simulation of particulate suspensions via a discretized Boltzmann equation part II. Numerical results. J Fluid Mech 271: 311–339

    Article  MathSciNet  Google Scholar 

  30. Marsaglia G, Bray TA (1964) A convenient method for generating normal variables. SIAM Rev 6: 260–264

    Article  MathSciNet  MATH  Google Scholar 

  31. Matsumoto M, Nishimura T (1998) Mersenne twister: a 623-dimensionally equidistributed uniform pseudorandom number generator. ACM Trans Model Comput Simul 8: 3–30

    Article  MATH  Google Scholar 

  32. Mattila K, Hyväluoma J, Rossi T, Aspnäs M, Westerholm J (2007) An efficient swap algorithm for the lattice Boltzmann method. Comput Phys Commun 176(3): 200–210

    Article  MATH  Google Scholar 

  33. McNamara G, Zanetti G (1988) Use of the Boltzmann equation to simulate lattice gas automata. Phys Rev Lett 61: 2332–2335

    Article  Google Scholar 

  34. Mehl M, Neckel T, Neumann P (2010) Navier–Stokes and lattice-Boltzmann on octree-like grids in the Peano framework. Int J Numer Methods Fluids 65(1): 67–86

    Article  MathSciNet  Google Scholar 

  35. Neckel T (2009) The PDE framework Peano: an environment for efficient flow simulations, Verlag Dr. Hut, Munich

  36. Neumann P, Bungartz H-J, Mehl M, Neckel T, Weinzierl T (2012) Coupled approaches for fluid dynamic problems using the PDE framework Peano. Commun Comput Phys 12(1): 65–84

    Google Scholar 

  37. Plewa T, Linde T, Weirs VG (2005) Adaptive mesh refinement—theory and applications. Springer, Berlin

    Book  MATH  Google Scholar 

  38. Pohl T, Kowarschik M, Wilke J, Iglberger K, Rüde U (2003) Optimization and profiling of the cache performance of parallel lattice Boltzmann codes. Parallel Process Lett 13(4): 549–560

    Article  MathSciNet  Google Scholar 

  39. Rohde M, Kandhai D, Derksen JJ, van den Akker HEA (2006) A generic, mass conservative local grid refinement technique for lattice-Boltzmann schemes. Int J Numer Methods Fluids 51: 439–468

    Article  MATH  Google Scholar 

  40. Sagan H (1994) Space-filling curves. Springer, New York

    Book  MATH  Google Scholar 

  41. Sharma N, Patankar NA (2004) Direct numerical simulation of the Brownian motion of particles by using fluctuating hydrodynamic equations. J Comput Phys 201(2): 466–486

    Article  MATH  Google Scholar 

  42. Succi S (2001) The lattice Boltzmann equation for fluid dynamics and beyond. Oxford University Press, Oxford

    MATH  Google Scholar 

  43. Turek S, Schäfer M (1996) Benchmark computations of laminar flow around cylinder. In: Hirschel EH (ed) Flow simulation with high-performance computers II, vol 52. Vieweg, Berlin, pp 547–566

  44. Verhaeghe F, Luo L-S, Blanpain B (2009) Lattice Boltzmann modeling of microchannel flow in the slip flow regime. J Comput Phys 228: 147–157

    Article  MathSciNet  MATH  Google Scholar 

  45. Weinzierl T (2009) A framework for parallel PDE solvers on multiscale adaptive Cartesian grids. Verlag Dr. Hut, Munich

  46. Yu D, Girimaji SS (2006) Multi-block lattice Boltzmann method: extension to 3D and validation in turbulence. Physica A 362: 118–124

    Article  Google Scholar 

  47. Yu D, Mei R, Shyy W (2002) A multi-block lattice Boltzmann method for viscous fluid flows. Int J Numer Methods Fluids 23: 99–120

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Neumann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neumann, P., Neckel, T. A dynamic mesh refinement technique for Lattice Boltzmann simulations on octree-like grids. Comput Mech 51, 237–253 (2013). https://doi.org/10.1007/s00466-012-0721-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-012-0721-y

Keywords

Navigation