Skip to main content

Advertisement

Log in

A goal-oriented field measurement filtering technique for the identification of material model parameters

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The post-processing of experiments with nonuniform fields is still a challenge: the information is often much richer, but its interpretation for identification purposes is not straightforward. However, this is a very promising field of development because it would pave the way for the robust identification of multiple material parameters using only a small number of experiments. This paper presents a goal-oriented filtering technique in which data are combined into new output fields which are strongly correlated with specific quantities of interest (the material parameters to be identified). Thus, this combination, which is nonuniform in space, constitutes a filter of the experimental outputs, whose relevance is quantified by a quality function based on global variance analysis. Then, this filter is optimized using genetic algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lubineau G, Ladeveze P, Violeau D (2006) Durability of CFRP laminates under thermomechanical loading: A micro-meso damage model. Compos Sci Technol 66(7-8): 983–992

    Article  Google Scholar 

  2. Herakovich CT (1997) Mechanics of fibrous composites. Wiley, New York

    Google Scholar 

  3. Iosipescu N (1967) New accurate procedure for single shear testing of metals. J Mater 2(3): 537–566

    Google Scholar 

  4. Arcan M, Hashin Z, Voloshin A (1978) A method to produce uniform plane stress states with applications to fiber-reinforced materials. Exp Mech 18(14): 141–146

    Article  Google Scholar 

  5. Pierron F, Green B, Wisnom MR, Hallett SR (2007) Full-field assessment of the damage process of laminated composite open-hole tensile specimens. Compos Part A 38: 2321–2332

    Article  Google Scholar 

  6. Guinard S, Allix O, Guédra-Degeorges D, Vinet A (2002) A 3d damage analysis of low-velocity impacts on laminated composites. Compos Sci Technol 62: 585–589

    Article  Google Scholar 

  7. Kucerova A, Brancherie D, Ibrahimbegovic A, Zeman J, Bittnar Z (2009) Novel anisotropic continuum-discrete damage model capable of representing localized failure of massive structures. Eng Comput Int J Comput Aided Eng Softw 26(1/2): 128–144

    Article  Google Scholar 

  8. Sutton MA, Cheng M, Peters WH, Chao YJ, McNeill SR (1986) Application of an optimized digital correlation method to planar deformation analysis. Image Vis Comput 4(3): 143–150

    Article  Google Scholar 

  9. Sutton MA, Wolters WJ, Peters WH, Ranson WF, McNeill SR (1983) Determination of displacements using an improved digital correlation method. Image Vis Comput 1(3): 133–139

    Article  Google Scholar 

  10. Grédiac M, Toussaint E, Pierron F (2002) Identification of the mechanical properties of materials with the virtual fields method, an alternative to finite element model updating. Comptes Rendus Mecanique 330(2): 107–112

    Article  MATH  Google Scholar 

  11. Grédiac M (1989) Principe des travaux virtuels et identification. Comptes Rendus Mecanique 309: 1–5

    MATH  Google Scholar 

  12. Geymonat G, Hild F, Pagano S (2002) Identification of elastic parameters by displacement field measurement. Comptes Rendus Mecanique 330(6): 403–408

    Article  MATH  Google Scholar 

  13. Claire D, Hild F, Roux S (2002) Identification of damage fields using kinematic measurements. Comptes Rendus Mecanique 330: 729–734

    Article  MATH  Google Scholar 

  14. Avril S, Bonnet M, Bretelle A-S, Grédiac M, Hild F, Ienny P, Latourte F, Lemosse D, Pagano S, Pagnacco E, Pierron F (2008) Overview of identification methods of mechanical parameters based on full-field measurements. Exp Mech 48: 381–402

    Article  Google Scholar 

  15. Avril S, Huntley JM, Pierron F, Steele DD (2008) 3d heterogeneous stiffness reconstruction using MRI and the virtual fields method. Exp Mech 48: 479–494

    Article  Google Scholar 

  16. Sobol IM (1993) Sensitivity estimates for nonlinear mathematical models. MMCE 1(4): 407–414

    MATH  MathSciNet  Google Scholar 

  17. Saltelli A, Sobol IM (1995) About the use of rank transformation in sensitivity analysis of model output. Reliab Eng Syst Saf 50: 225–239

    Article  Google Scholar 

  18. Sobol IM (2001) Global sensitivity indices for nonlinear mathematical models and their monte carlo estimates. Math Comput Simul 55: 217–280

    MathSciNet  Google Scholar 

  19. Sobol IM (1969) Multidimensional quadrature formulas and Haar functions. Nauka

  20. Archer GEB, Saltelli A, Sobol IM (1997) Sensitivity measures, anova-like techniques and the use of bootstrap. J Stat Comput Simul 58(2): 99–120

    Article  MATH  Google Scholar 

  21. Zohdi TI (2003) Genetic design of solids possessing a random-particulate microstructure. Philos Trans Roy Soc Math Phys Eng Sci 361(1806): 1021–1043

    Article  MATH  MathSciNet  Google Scholar 

  22. Zohdi TI (2003) Constrained inverse formulations in random material design. Comput Meth Appl Mech Eng 192(28-30): 3179–3194

    Article  MATH  Google Scholar 

  23. Owen A (1995) Monte Carlo and Quasi-Monte Carlo methods in scientific computing. Chapter randomly permuted (t,m,s)-Nets and (t,s)-Sequences. Springer-Verlag, New York

  24. McKay MD, Beckman R, Conover W (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2): 239–245

    Article  MATH  MathSciNet  Google Scholar 

  25. Halton JH (1960) On the efficiency of certain quasi-random sequences of point sequence. Numer Math 2: 84–90

    Article  MathSciNet  Google Scholar 

  26. Sobol IM (1967) On the distribution of points in a cube and the approximate evaluation of integrals. USSR Comput Math Math Phys 7: 86–112

    Article  MATH  MathSciNet  Google Scholar 

  27. Faure H (1982) Discrépance de suites associées à un système de numération (en dimension s). Acta Arith 41: 337–351

    MATH  MathSciNet  Google Scholar 

  28. Saltelli A, Chan K, Scott EM (2000) Sensitivity analysis. Wiley, New York

    MATH  Google Scholar 

  29. Turanyi T (1990) Sensitivity analysis of complex kinetic system, tools and applications. J Math Chem 5: 203–248

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Lubineau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lubineau, G. A goal-oriented field measurement filtering technique for the identification of material model parameters. Comput Mech 44, 591–603 (2009). https://doi.org/10.1007/s00466-009-0392-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-009-0392-5

Keywords

Navigation