Skip to main content
Log in

Radiation Exposure to Staff and Patient During Videofluoroscopic Swallowing Studies and Recommended Protection Strategies

  • Review
  • Published:
Dysphagia Aims and scope Submit manuscript

Abstract

Videofluoroscopic swallowing studies expose both the patients and the staff to ionising radiation. Although the radiation exposure is considered low compared to other diagnostic procedures, it is still prudent to keep the radiation dose as low as reasonably achievable. This review aims to summarise the latest literature pertaining to staff and patient radiation dose, as well as to make evidence-based recommendations on dose optimisation strategies. The evidence shows that patient radiation dose is low; nonetheless, care must be taken for patients that require multiple examinations. There are limited studies measuring the staff dose during videofluoroscopic swallowing procedures. However, the operator may receive radiation doses approaching 1 mSv per year. Recommendations for radiation protection strategies are summarised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Warren-Forward H, Mathisen B, Best S, Boxsell P, Finlay J, Heasman A, Hodis D, Morgan C, Nixon J. Australian speech-language pathologists’ knowledge and practice of radiation protection while performing videofluoroscopic swallowing studies. Dysphagia. 2008;23:371–7. https://doi.org/10.1007/s00455-008-9151-6.

    Article  PubMed  Google Scholar 

  2. Morishima Y, Chida K, Watanabe H. Estimation of the dose of radiation received by patient and physician during a videofluoroscopic swallowing study. Dysphagia. 2016;31:574–8. https://doi.org/10.1007/s00455-016-9718-6.

    Article  PubMed  Google Scholar 

  3. (2012). 41(1/2).

    Article  Google Scholar 

  4. Australian Radiation Protection and Nuclear Safety Agency. Code of practice for radiation protection in the medical applications of ionizing radiation. Melbourne: Australian Radiation Protection and Nuclear Safety Agency; 2008.

    Google Scholar 

  5. International Commission on Radiological Protection. Radiological protection in paediatric diagnostic and interventional radiology. ICRP Publication 121. Ann ICRP. 2013;42(2):1–63.

    Article  Google Scholar 

  6. International Atomic and Energy Agency (2014) Radiation protection and safety of radiation sources: international basic safety standards—general safety requirements Part 3.

  7. International Commission on Radiological Protection. The 2007 recommendations of the international commission on radiological protection. ICRP Publication 103. Ann. ICRP. 2007;37(2–4):1–332.

    Google Scholar 

  8. Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation, National Research Council (2006) Health risks from exposure to low levels of ionizing radiation: BEIR VII Phase 2. https://doi.org/10.17226/11340.

  9. Russell SM, Applegate K, Kang J. Speech-Language Pathologists’ radiation knowledge & practices during completion of the MBSS: a survey. J Med Speech-Lang Pathol. 2013;21(4):369–91.

    Google Scholar 

  10. Choi MH, Jung SE, Oh SN, Byun JY. Educational effects of radiation reduction during fluoroscopic examination of the adult gastrointestinal tract. Acad Radiol. 2018;25(2):202–8. https://doi.org/10.1016/j.acra.2017.09.009.

    Article  PubMed  Google Scholar 

  11. Moro L, Cazzani C. Dynamic swallowing study and radiation dose to patients. Radiol Med. 2006;111:123–9. https://doi.org/10.1007/s11547-006-0013-8.

    Article  CAS  PubMed  Google Scholar 

  12. Zammit-Maempel I, Chapple C-L, Leslie P. Radiation dose in videofluoroscopic swallow studies. Dysphagia. 2007;22:13–5. https://doi.org/10.1007/s00455-006-9031-x.

    Article  PubMed  Google Scholar 

  13. Hart D, Hillier MC, Shrimpton PC. HPA-CRCE-034: doses to patients from radiographic and fluoroscopic X-ray imaging procedures in the UK—2010 review. london: Health Protection Agency; 2012.

    Google Scholar 

  14. Chau KH, Kung CM. Patient dose during videofluoroscopy swallowing studies in a Hong Kong public hospital. Dysphagia. 2009;24:387–90. https://doi.org/10.1007/s00455-009-9214-3.

    Article  PubMed  Google Scholar 

  15. Kim HM, Choi KH, Kim TW. Patients’ radiation dose during videofluoroscopic swallowing studies according to underlying characteristics. Dysphagia. 2013;28:153–8. https://doi.org/10.1007/s00455-012-9424-y.

    Article  PubMed  Google Scholar 

  16. Crawley MT, Savage P, Oakley F. Patient and Operator dose during fluoroscopic examination of swallow mechanism. Br J Radiol. 2004;77:654–6. https://doi.org/10.1259/bjr/22832251.

    Article  CAS  PubMed  Google Scholar 

  17. Weir KA, McMahon SM, Long G, Bunch JA, Pandeya N, Coakley KS, Chang AB. Radiation doses to children during modified barium swallow studies. Pediatr Radiol. 2007;37:283–90. https://doi.org/10.1007/s00247-006-0397-6.

    Article  PubMed  Google Scholar 

  18. Bonilha HS, Humphries K, Blair J, Hill EG, McGrattan K, Carnes B, Huda W, Martin-Harris B. Radiation exposure time during MBSS: influence of swallowing impairment severity, medical diagnosis, clinician experience, and standardized protocol use. Dysphagia. 2013;28(1):77–85. https://doi.org/10.1007/s00455-012-9415-z.

    Article  PubMed  Google Scholar 

  19. Bonilha HS, Blair J, Carnes B, Huda W, Humphries K, McGrattan K, Michel Y, Martin-Harris B. Preliminary investigation of the effect of pulse rate on judgments of swallowing impairment and treatment recommendations. Dysphagia. 2013. https://doi.org/10.1007/s00455-013-9463-z.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hersh C, Wentland C, Sally S, de Stadler M, Hardy S, Fracchia MS, Liu B, Hartnick C. Radiation exposure from videofluoroscopic swallow studies in children with a type 1 laryngeal cleft and pharyngeal dysphagia: a retrospective review. Int J Pediatr Otorhinolaryngol. 2016;89:92–6. https://doi.org/10.1016/j.ijporl.2016.07.032.

    Article  PubMed  Google Scholar 

  21. Bonilha HS, Wilmskoetter J, Tipnis SV, Martin-Harris B, Huda W. Effective dose per unit kerma-area product conversion factors in adults undergoing modified barium swallow studies. Radiat Prot Dosimetry. 2017;176(3):269–77. https://doi.org/10.1093/rpd/ncx006.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hart D, Jones DG, Wall BF. Coefficients for estimating effective doses from 34 paediatric X-ray examinations. NRPB-R279. Chilton: NRPB; 1996.

    Google Scholar 

  23. Le Heron J. CHILDOSE: a user’s guide (NRL). New Zealand: National Radiation Laboratory; 1997.

    Google Scholar 

  24. Tapiovaara M, Siiskonen T. PCXMC, A Monte Carlo program for calculating patient doses in medical x-ray examinations. Report STUK-A139. 2nd ed. Finland (STUK): Radiation and Nuclear Safety Authority; 2008.

    Google Scholar 

  25. Iawi K, Hashimoto K, Nishizawa K, Sawada K, Honda K. Evaluation of effective dose from a RANDO phantom in videofluorography diagnostic procedures for diagnosing dysphagia. Dentomaxillofac Radiol. 2011;40:96–101. https://doi.org/10.1259/dmfr/51307488.

    Article  Google Scholar 

  26. Miksys N, Gordon CL, Thomas K, Connolly BL. Estimating effective dose to pediatric patients undergoing interventional radiology procedures using anthropomorphic phantoms and MOSFET dosimeters. Am J Roentgenol. 2010;194:1315–22. https://doi.org/10.2214/AJR.09.3634.

    Article  Google Scholar 

  27. Bushberg JT, Seibert JA, Leidholt EM Jr, Boone JM. The essental physics of medical imaging. 3rd ed. Alphen aan den Rijn: Wolters Kluwer; 2012.

    Google Scholar 

  28. Miles A, Benoit A, Keesing M, McLauchlan H, Ong E, Rigby H, Sargent M, Whitteker L, White J, Williams P. New Zealand speech-language therapy clinical practice guideline on videofluoroscopic study of swallowing (VFSS). Wellington: New Zealand Speech-language Therapists’ Association; 2011.

    Google Scholar 

  29. Hayes A, Alspaugh JM, Bartekt D, Campion MB, Eng J, Gayler BW, Henkel SE, Jones B, Lingaraj A, Mahesh M, Rostkowski M, Smith CP, Haynos J. Radiation safety for the speech-language pathologist. Dysphagia. 2009;24:274–9. https://doi.org/10.1007/s00455-008-9201-0.

    Article  PubMed  Google Scholar 

  30. Jones J (March 2018) Case study: collaboration comes standards. American College of Radiology Imaging 3. https://www.acr.org/Practice-Management-Quality-Informatics/Imaging-3/Case-Studies/Quality-and-Safety/Collaboration-Comes-Standard.

  31. Sulieman A, Elhag B, Alkhorayef M, Babikir E, Theodorou K, Kappas C, Bradley D. Estimation of effective dose and radiation risk in pediatric barium studies procedures. Appl Radiat Isot. 2017. https://doi.org/10.1016/j.apradiso.2017.07.013.

    Article  PubMed  Google Scholar 

  32. American College of Radiology (2017) ACR-SPR practice parameter for the performance of the modified barium swallow. 2017. https://www.acr.org/-/media/ACR/Files/Practice-Parameters/modified-ba-swallow.pdf.

  33. American Association of Physicists in Medicine (2012) Functionality and operation of fluoroscopic automatic brightness control/automatic dose rate control logic in modern cardiovascular and interventional angiography systems (AAPM Report No. 125).

  34. Weiss J, Notohamiprodjo M, Neumaier K, Li M, Flatz W, Nikolaou K, Pomschar A. Feasibility of low-dose digital pulsed video-fluoroscopic swallow exams (VFSE): effects on radiation dose and image quality. Acta Radiol. 2017;58(9):1037–44. https://doi.org/10.1177/0284185116685924.

    Article  PubMed  Google Scholar 

  35. Cohen MD. Can we use pulsed fluoroscopy to decrease the radiation dose during video fluoroscopic feeding studies in children? Clin Radiol. 2009;64:70–3. https://doi.org/10.1016/j.crad.2008.07.011.

    Article  CAS  PubMed  Google Scholar 

  36. Morishima Y, Chida K, Muroya Y, Utsumi Y. Effectiveness of a new lead-shielding device and additional filter for reducing staff and patient radiation exposure during videofluoroscopic swallowing study using a human phantom. Dysphagia. 2018;33:109–14. https://doi.org/10.1007/s00455-017-9839-6.

    Article  PubMed  Google Scholar 

  37. Bibbo G, Balman D, Linke R. Diagnostic reference levels for common paediatric fluoroscopic examinations performed at a Dedicated Paediatric Australian Hospital. J Med Imaging Radiat Oncol. 2016;60:469–74. https://doi.org/10.1111/1754-9485.12478.

    Article  PubMed  Google Scholar 

  38. Hiorns MP, Saini A, Marsden PJ. A review of current local dose-area product levels for paediatric fluoroscopy in a tertiary referral centre compared with national standards. Why are they so different? Br J Radiol. 2006;79(940):326–30. https://doi.org/10.1259/bjr/36530782.

    Article  CAS  PubMed  Google Scholar 

  39. American College of Radiology (2013) ACR-AAPM technical standard for management of the use of radiation in fluoroscopic procedures. https://www.acr.org/-/media/ACR/Files/Practice-Parameters/MgmtFluoroProc.pdf.

  40. International Atomic and Energy Agency. Diagnostic radiology physics: a handbook for teachers and students. Vienna: International Atomic and Energy Agency; 2014.

    Google Scholar 

  41. Huda W. Review of radiologic physics. 4th ed. Alphen aan den Rijn: Wolters Kluwer; 2016.

    Google Scholar 

  42. Image Gently Alliance. https://www.imagegently.org/.

  43. American College of Radiology. https://www.imagewisely.org/.

  44. Steele CM, Murray J. Radiation awareness and practices among Speech-Language Pathologists. Special Interest Division 13—Swallowing and Swallowing Disorders (Dysphagia). Rockville: American Speech-Language-Hearing Association; 2004.

    Google Scholar 

  45. Australian Radiation Protection and Nuclear Safety Agency. Code for radiation protection in planned exposure situations. Melbourne: Australian Radiation Protection and Nuclear Safety Agency; 2016.

    Google Scholar 

  46. American Speech-Language-Hearing Association (2004) Knowledge and skills needed by speech-language pathologists performing videofluoroscopic swallowing studies [Knowledge and Skills].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Khaldoun Badawy.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest or financial funding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Earl, V.J., Badawy, M.K. Radiation Exposure to Staff and Patient During Videofluoroscopic Swallowing Studies and Recommended Protection Strategies. Dysphagia 34, 290–297 (2019). https://doi.org/10.1007/s00455-018-9945-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00455-018-9945-0

Keywords

Navigation