Skip to main content
Log in

Optimal Self-Assembly of Finite Shapes at Temperature 1 in 3D

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Tile self-assembly in which tiles may bind in a non-cooperative fashion is often referred to as “temperature 1 self-assembly” or simply “non-cooperative self-assembly”. In this type of self-assembly, a tile may non-cooperatively bind to an assembly via (at least) one of its sides, unlike in cooperative self-assembly, in which some tiles may be required to bind on two or more sides. Cooperative self-assembly leads to highly non-trivial theoretical behavior but two-dimensional non-cooperative self-assembly is conjectured to be only capable of producing highly-regular shapes and patterns, which, in general, cannot be interpreted as complex computation. Remarkably, Cook et al. (Temperature 1 self-assembly: deterministic assembly in 3D and probabilistic assembly in 2D. In: Proceedings of the 22nd Annual ACM–SIAM Symposium on Discrete Algorithms 2011) showed that three-dimensional non-cooperative self-assembly is essentially as powerful as cooperative self-assembly, with respect to Turing universality and self-assembly of \(N \times N\) squares. In this paper, we consider the non-cooperative self-assembly of just-barely 3D shapes. Working in a three-dimensional variant of Winfree’s abstract Tile Assembly Model, we show that, for an arbitrary finite, connected shape \(X \subset {\mathbb {Z}}^2\), there is a tile set that uniquely self-assembles at temperature 1 into a 3D representation of a scaled-up version of X with optimal program-size complexity, where the “program-size complexity”, also known as “tile complexity”, of a shape is the minimum number of tile types required to uniquely self-assemble it. Moreover, our construction is “just barely” 3D in the sense that it only places tiles in the \(z = 0\) and \(z = 1\) planes. Our result is essentially a just-barely 3D temperature 1 simulation of a similar 2D temperature 2 result by Soloveichik and Winfree (SIAM J Comput 36(6):1544–1569, 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62

Similar content being viewed by others

References

  1. Adleman, L.M., Cheng, Q., Goel, A., Huang, M.-D.A.: Running time and program size for self-assembled squares. In: STOC, pp. 740–748 (2001)

  2. Barish, R.D., Schulman, R., Rothemund, P.W., Winfree, E.: An information-bearing seed for nucleating algorithmic self-assembly. Proc. Natl. Acad. Sci. 106(15), 6054–6059 (2009)

    Article  Google Scholar 

  3. Cannon, S., Demaine, E.D., Demaine, M.L., Eisenstat, S., Patitz, M.J., Schweller, R., Summers, S.M., Winslow, A.: Two hands are better than one (up to constant factors). In: Proceedings of the Thirtieth International Symposium on Theoretical Aspects of Computer Science, pp. 172–184 (2013)

  4. Chen, H.-L., Doty, D.: Parallelism and time in hierarchical self-assembly. In: SODA’2012: Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, pp. 1163–1182 (2012)

  5. Chen, H.-L., Goel, A.: Error free self-assembly using error prone tiles. In: Proceedings of the 10th International Meeting on DNA Based Computers, pp. 274–283 (2004)

  6. Cheng, Q., Aggarwal, G., Goldwasser, M.H., Kao, M.-Y., Schweller, R.T., de Espanés, P.M.: Complexities for generalized models of self-assembly. SIAM J. Comput. 34, 1493–1515 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cook, M., Fu, Y., Schweller, R.: Temperature 1 self-assembly: deterministic assembly in 3D and probabilistic assembly in 2D. In: Proceedings of the 22nd Annual ACM–SIAM Symposium on Discrete Algorithms (2011)

  8. Doty, D., Lutz, J.H., Patitz, M.J., Summers, S.M., Woods, D.: Intrinsic universality in self-assembly. In: Proceedings of the 27th International Symposium on Theoretical Aspects of Computer Science, pp. 275–286 (2009)

  9. Doty, D., Lutz, J.H., Patitz, M.J., Schweller, R.T., Summers, S.M., Woods, D.: The tile assembly model is intrinsically universal. In: Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’2012) pp. 302–310 (2012)

  10. Doty, D., Patitz, M.J., Summers, S.M.: Limitations of self-assembly at temperature 1. Theor. Comput. Sci. 412, 145–158 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Evans, C.: Crystals that count! physical principles and experimental investigations of DNA tile self-assembly, Ph.D. thesis, California Institute of Technology (2014)

  12. Fujibayashi, K., Hariadi, R., Park, S.H., Winfree, E., Murata, S.: Toward reliable algorithmic self-assembly of DNA tiles: a fixed-width cellular automaton pattern. Nano Lett. 8(7), 1791–1797 (2007)

    Article  Google Scholar 

  13. Furcy, D., Micka, S., Summers, S.M.: Optimal program-size complexity for self-assembly at temperature 1 in 3D. In: DNA 21: 21st International Conference on DNA Computing and Molecular Programming, pp. 71–86 (2015)

  14. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and its Applications, 3rd edn. Springer, New York (2008)

    Book  MATH  Google Scholar 

  15. Luhrs, C.: Polyomino-safe DNA self-assembly via block replacement. In: Geol, A., Simmel, F.C., Sosík, P. (eds.) DNA14. Lecture Notes in Computer Science, vol. 5347, pp. 112–126. Springer, Berlin (2008)

    Google Scholar 

  16. Lund, K., Manzo, A.T., Dabby, N., Micholotti, N., Johnson-Buck, A., Nangreave, J., Taylor, S., Pei, R., Stojanovic, M.N., Walter, N.G., Winfree, E., Yan, H.: Molecular robots guided by prescriptive landscapes. Nature 465, 206–210 (2010)

    Article  Google Scholar 

  17. Manuch, J., Stacho, L., Stoll, C.: Two lower bounds for self-assemblies at temperature 1. J. Comput. Biol. 17(6), 841–852 (2010)

    Article  MathSciNet  Google Scholar 

  18. Mao, C., LaBean, T.H., Relf, J.H., Seeman, N.C.: Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature 407(6803), 493–496 (2000)

    Article  Google Scholar 

  19. Meunier, P.-E., Patitz, M.J., Summers, S.M., Theyssier, G., Winslow, A., Woods, D.: Intrinsic universality in tile self-assembly requires cooperation. In: Proceedings of the 25th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA), pp. 752–771 (2014)

  20. Patitz, M.J., Rogers, T.A., Schweller, R.T., Summers, S.M., Winslow, A.: Resiliency to multiple nucleation in temperature-1 self-assembly. In: Proceedings of DNA Computing and Molecular Programming: 22nd International Conference, (DNA’22) Munich, Germany, 4–8 Sept 2016, pp. 98–113 (2016)

  21. Reif, J., Sahu, S., Yin, P.: Compact error-resilient computational DNA tiling assemblies. In: DNA: International Workshop on DNA-Based Computers, LNCS (2004)

  22. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297–302 (2006)

    Article  Google Scholar 

  23. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares (extended abstract). In: STOC’00: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, pp. 459–468 (2000)

  24. Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2(12), 2041–2053 (2004)

    Article  Google Scholar 

  25. Schulman, R., Winfree, E.: Synthesis of crystals with a programmable kinetic barrier to nucleation. Proc. Natl. Acad. Sci. 104(39), 15236–15241 (2007)

    Article  Google Scholar 

  26. Seeman, N.C.: Nucleic-acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982)

    Article  Google Scholar 

  27. Soloveichik, D., Winfree, E.: Complexity of compact proofreading for self-assembled patterns. In: The Eleventh International Meeting on DNA Computing (2005)

  28. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM J. Comput. 36(6), 1544–1569 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, H.: Proving theorems by pattern recognition–II. Bell Syst. Tech. J. XL(1), 1–41 (1961)

    Article  MathSciNet  Google Scholar 

  30. Winfree, E.: Algorithmic self-assembly of DNA, Ph.D. thesis, California Institute of Technology (June 1998)

  31. Winfree, E., Bekbolatov, R.: Proofreading tile sets: error correction for algorithmic self-assembly. In: Chen, J., Reif, J.H. (eds.) DNA. Lecture Notes in Computer Science, vol. 2943, pp. 126–144. Springer, Berlin (2003)

    Google Scholar 

  32. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693), 539–544 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Matthew Patitz and the anonymous reviewers for offering helpful improvements to the presentation of our main construction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott M. Summers.

Additional information

This author’s research was supported in part by UWO Faculty Development Research Grant FDR881.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furcy, D., Summers, S.M. Optimal Self-Assembly of Finite Shapes at Temperature 1 in 3D. Algorithmica 80, 1909–1963 (2018). https://doi.org/10.1007/s00453-016-0260-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-016-0260-6

Keywords

Navigation