Skip to main content
Log in

Enhancing enzyme stability and metabolic functional ability of β-galactosidase through functionalized polymer nanofiber immobilization

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A functionalized polystyrene nanofiber (PSNF) immobilized β-galactosidase assembly (PSNF-Gal) was synthesized as a nanobiocatalyst aiming to enhance the biocatalyst stability and functional ability. The PSNF fabricated by electrospinning was functionalized through a chemical oxidation method for enzyme binding. The bioengineering performance of the enzyme carriers was further evaluated for bioconversion of lactose to galacto-oligosaccharides (GOS). The modified PSNF-Gal demonstrated distinguished performances to preserve the same activity as the free β-galactosidase at the optimum pH of 7.0, and to enhance the enzyme stability of PSNF-Gal in an alkaline condition up to pH 10. The PSNF assembly demonstrated improved thermal stability from 37 to 60 °C. The nanobiocatalyst was able to retain 30 % of its initial activity after ninth operation cycles comparing to four cycles with the unmodified counterpart. In contrast with free β-galactosidase, the modified PSNF-Gal enhanced the GOS yield from 14 to 28 %. These findings show the chemically modified PSNF-based nanobiocatalyst may be pertinent for various enzyme-catalysed bioprocessing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xue R, Woodley JM (2012) Process technology for multi-enzymatic reaction systems. Bioresour Technol 115:183–195

    Article  CAS  Google Scholar 

  2. Talbert J, Goddard J (2012) Enzymes on material surfaces. Coll Surf B Biointerfaces 93:8–19

    Article  CAS  Google Scholar 

  3. Rodrigues RC, Ortiz C, Berenguer-Murcia A, Torres R, Fernandez-Lafuente R (2013) Modifying enzyme activity and selectivity by immobilization. Chem Soc Rev 42:6290–6307

    Article  CAS  Google Scholar 

  4. Misson M, Zhang H, Jin B (2015) Nanobiocatalyst advancements and bioprocessing applications. J R Soc Interface 12

  5. Chen H, Yuan L, Song W, Wu Z, Li D (2008) Biocompatible polymer materials: role of protein–surface interactions. Prog Polym Sci 33:1059–1087

    Article  CAS  Google Scholar 

  6. Palomo JM, Muñoz G, Fernández-Lorente G, Mateo C, Fernández-Lafuente R, Guisán JM (2002) Interfacial adsorption of lipases on very hydrophobic support (octadecyl–Sepabeads): immobilization, hyperactivation and stabilization of the open form of lipases. J Mol Catal B Enzym 19–20:279–286

    Article  Google Scholar 

  7. Asuri P, Karajanagi SS, Yang H, Yim T-J, Kane RS, Dordick JS (2006) Increasing protein stability through control of the nanoscale environment. Langmuir 22:5833–5836

    Article  CAS  Google Scholar 

  8. Jordan J, Kumar CSSR, Theegala C (2011) Preparation and characterization of cellulase-bound magnetite nanoparticles. J Mol Catal B Enzym 68:139–146

    Article  CAS  Google Scholar 

  9. Kaur J, Suri CR (2007) Direct hapten coated ELISA for immunosensing of low molecular weight analytes

  10. Ros TG, van Dillen AJ, Geus JW, Koningsberger DC (2002) Surface oxidation of carbon nanofibres. Chem A Eur J 8:1151–1162

    Article  CAS  Google Scholar 

  11. An H, Jin B, Dai S (2015) Fabricating polystyrene fiber-dehydrogenase assemble as a functional biocatalyst. Enzyme and microbial Technol 68:15–22

    Article  CAS  Google Scholar 

  12. Rodriguez-Colinas B, Fernandez-Arrojo L, Ballesteros AO, Plou FJ (2014) Galactooligosaccharides formation during enzymatic hydrolysis of lactose: towards a prebiotic-enriched milk. Food Chem 145:388–394

    Article  CAS  Google Scholar 

  13. Lu L, Xu S, Zhao R, Zhang D, Li Z, Li Y, Xiao M (2012) Synthesis of galactooligosaccharides by CBD fusion beta-galactosidase immobilized on cellulose. Bioresour Technol 116:327–333

    Article  CAS  Google Scholar 

  14. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  15. Verma ML, Barrow CJ, Kennedy JF, Puri M (2012) Immobilization of beta-d-galactosidase from Kluyveromyces lactis on functionalized silicon dioxide nanoparticles: characterization and lactose hydrolysis. Int J Biol Macromol 50:432–437

    Article  CAS  Google Scholar 

  16. Zheng P, Yu H, Professor ZS, Ni Y, Zhang W, Fan Y, Xu Y (2006) Production of galacto-oligosaccharides by immobilized recombinant β-galactosidase from Aspergillus candidus. Biotechnol J 1:1464–1470

    Article  CAS  Google Scholar 

  17. Gosling A, Alftrén J, Stevens GW, Barber AR, Kentish SE, Gras SL (2009) Facile pretreatment of bacillus circulans β-galactosidase increases the yield of galactosyl oligosaccharides in milk and lactose reaction systems. J Agric Food Chem 57:11570–11574

    Article  CAS  Google Scholar 

  18. Ansari SA, Husain Q (2012) Lactose hydrolysis from milk/whey in batch and continuous processes by concanavalin A-Celite 545 immobilized Aspergillus oryzae b-galactosidase. Food Bioprod Process 90:351–359

    Article  CAS  Google Scholar 

  19. Ignatova M, Stoilova O, Manolova N, Mita DG, Diano N, Nicolucci C, Rashkov I (2009) Electrospun microfibrous poly(styrene-alt-maleic anhydride)/poly(styrene-co-maleic anhydride) mats tailored for enzymatic remediation of waters polluted by endocrine disruptors. Eur Polymer J 45:2494–2504

    Article  CAS  Google Scholar 

  20. Li Y, Quan J, White CB, Williams GR, Wu J-X, Zhu L-M (2012) Electrospun polyacrylonitrile-glycopolymer nanofibrous membranes for enzyme immobilization. J Mol Catal B Enzym 76:15–22

    Article  Google Scholar 

  21. Park J-M, Kim M, Park H-S, Jang A, Min J, Kim Y-H (2013) Immobilization of lysozyme-CLEA onto electrospun chitosan nanofiber for effective antibacterial applications. Int J Biol Macromol 54:37–43

    Article  CAS  Google Scholar 

  22. Feng C, Khulbe KC, Matsuura T, Tabe S, Ismail AF (2013) Preparation and characterization of electro-spun nanofiber membranes and their possible applications in water treatment. Sep Purif Technol 102:118–135

    Article  CAS  Google Scholar 

  23. Stavyiannoudaki V, Vamvakaki V, Chaniotakis N (2009) Comparison of protein immobilisation methods onto oxidised and native carbon nanofibres for optimum biosensor development. Anal Bioanal Chem 395:429–435

    Article  CAS  Google Scholar 

  24. Fernandez MF, Sanroman MA, Moldes D (2012) Recent developments and applications of immobilized laccase. Biotechnology Advance

  25. Güleç HA (2013) Immobilization of β-galactosidase from Kluyveromyces lactis onto polymeric membrane surfaces: effect of surface characteristics. Coll Surf B 104:83–90

    Article  Google Scholar 

  26. Ansari SA, Satar R, Alam F, Alqahtani MH, Chaudhary AG, Naseer MI, Karim S, Sheikh IA (2012) Cost effective surface functionalization of silver nanoparticles for high yield immobilization of Aspergillus oryzae B-galactosidase and its application in lactose hydrolysis. Process Biochem 47:2427–2433

    Article  CAS  Google Scholar 

  27. Neri DFM, Balcao VM, Jr Carneiro-da-Cunha MG, Jr Teixeir LBC (2008) Immobilization of b-galactosidase from Kluyveromyces lactis onto a polysiloxane–polyvinyl alcohol magnetic (mPOS–PVA) composite for lactose hydrolysis. Catal Commun 9:2334–2339

    Article  CAS  Google Scholar 

  28. Husain Q, Ansari SA, Alam F, Azam A (2011) Immobilization of Aspergillus oryzae beta galactosidase on zinc oxide nanoparticles via simple adsorption mechanism. Int J Biol Macromol 49:37–43

    Article  CAS  Google Scholar 

  29. Xu R, Zhou Q, Li F, Zhang B (2013) Laccase immobilization on chitosan/poly(vinyl alcohol) composite nanofibrous membranes for 2,4-dichlorophenol removal. Chem Eng J 222:321–329

    Article  CAS  Google Scholar 

  30. Wu L, Yuan X, Sheng J (2005) Immobilization of cellulase in nanofibrous PVA membranes by electrospinning. J Membr Sci 250:167–173

    Article  CAS  Google Scholar 

  31. Cho EJ, Jung S, Kim HJ, Lee YG, Nam KC, Lee HJ, Bae HJ (2012) Co-immobilization of three cellulases on Au-doped magnetic silica nanoparticles for the degradation of cellulose. Chem Commun Camb 48:886–888

    Article  CAS  Google Scholar 

  32. Rodriguez-Colinas B, Poveda A, Jimenez-Barbero J, Ballesteros AO, Plou FJ (2012) Galacto-oligosaccharide synthesis from lactose solution or skim milk using the β-galactosidase from Bacillus circulans. J Agric Food Chem 60:6391–6398

    Article  CAS  Google Scholar 

  33. Jovanovic-Malinovska R, Fernandes P, Winkelhausen E, Fonseca L (2012) Galacto-oligosaccharides synthesis from lactose and whey by beta-galactosidase immobilized in PVA. Appl Biochem Biotechnol 168:1197–1211

    Article  CAS  Google Scholar 

  34. Neri DFM, Balcao VM, Costa RS, Rocha ICAP, Ferreira EMFC, Torres DPM, Jr Rodrigues LRM, Jr Teixeira LBC (2009) Galacto-oligosaccharides production during lactose hydrolysis by free Aspergillus oryzae b-galactosidase and immobilized on magnetic polysiloxane-polyvinyl alcohol. Food Chem 128(115):92–99

    Article  Google Scholar 

  35. Vera C, Guerrero C, Conejeros R, Illanes A (2012) Synthesis of galacto-oligosaccharides by beta-galactosidase from Aspergillus oryzae using partially dissolved and supersaturated solution of lactose. Enzyme Microb Technol 50:188–194

    Article  CAS  Google Scholar 

  36. Albayrak N, Yang ST (2002) Production of galacto-oligosaccharides from lactose by aspergillus oryzae B-galactosidase Immobilized on on cotton cloth. Biotechnol Bioeng 77:8–19

    Article  CAS  Google Scholar 

  37. Huerta LM, Vera C, Guerrero C, Wilson L, Illanes A (2011) Synthesis of galacto-oligosaccharides at very high lactose concentrations with immobilized-galactosidases from Aspergillus oryzae. Process Biochem 46:245–252

    Article  CAS  Google Scholar 

  38. Liu H, Liu J, Tan B, Zhou F, Qin Y, Yang R (2012) Covalent immobilization of Kluyveromyces fragilis beta-galactosidase on magnetic nanosized epoxy support for synthesis of galacto-oligosaccharide. Bioprocess Biosyst Eng 35:1287–1295

    Article  CAS  Google Scholar 

  39. Gulec HA immobilization of -galactosidase from Kluyveromyces Lactis onto polymeric membrane surfaces: Effect of surface characteristics. Coll Surf B Bioint

Download references

Acknowledgments

MM gratefully acknowledges the financial support from the Universiti Malaysia Sabah and the Malaysian Government. HZ thanks for the support from 111 Project (B12034). BHC acknowledges the support from the State Key Program of National Natural Science Foundation of China (No. 21336009). HPLC facility support from Paul Grbin’s research group and sugar analysis assistance by Nick Van Holst are highly appreciated. MM is also thankful for the technical supports by Jason Peak, Jeffrey Hiorns and Michael Jung from workshop department at School of Chemical Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misson, M., Jin, B., Chen, B. et al. Enhancing enzyme stability and metabolic functional ability of β-galactosidase through functionalized polymer nanofiber immobilization. Bioprocess Biosyst Eng 38, 1915–1923 (2015). https://doi.org/10.1007/s00449-015-1432-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1432-5

Keywords

Navigation