Skip to main content
Log in

Basaltic maar-diatreme volcanism in the Lower Carboniferous of the Limerick Basin (SW Ireland)

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Lead-zinc exploration drilling within the Limerick Basin (SW Ireland) has revealed the deep internal architecture and extra-crater deposits of five alkali-basaltic maar-diatremes. These were emplaced as part of a regional north-east south-west tectonomagmatic trend during the Lower Carboniferous Period. Field relationships and textural observations suggest that the diatremes erupted into a shallow submarine environment. Limerick trace element data indicates a genetic relationship between the diatremes and extra-crater successions of the Knockroe Formation, which records multiple diatreme filling and emptying cycles. Deposition was controlled largely by bathymetry defined by the surrounding Waulsortian carbonate mounds. An initial non-diatreme forming eruption stage occurred at the water-sediment interface, with magma-water interaction prevented by high magma ascent rates. This was followed by seawater incursion and the onset of phreatomagmatic activity. Magma-water interaction generated poorly vesicular blocky clasts, although the co-occurrence of plastically deformed and highly vesicular clasts indicate that phreatomagmatic and magmatic processes were not mutually exclusive. At a later stage, the diatreme filled with a slurry of juvenile lapilli and country rock lithic clasts, homogenised by the action of debris jets. The resulting extra-crater deposits eventually emerged above sea level, so that water ingress significantly declined, and late-stage magmatic processes became dominant. These deposits, largely confined to the deep vents, incorporate high concentrations of partially sintered globular and large ‘raggy’ lapilli showing evidence for heat retention. Our study provides new insights into the dynamics and evolution of basaltic diatremes erupting into a shallow water (20–120 m) submarine environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Allen SR, Fiske RS, Cashman KV (2008) Quenching of steam-charged pumice: Implications for submarine pyroclastic volcanism. Earth Planet Sci Lett 274(1):40–49

    Article  Google Scholar 

  • Aranda-Gómez J, Luhr JF (1996) Origin of the Joya Honda maar, San Luis Potosi, Mexico. J Volcanol Geotherm Res 74:1–18

    Article  Google Scholar 

  • Ashby DF (1939) The geological succession and petrology of the Lower Carboniferous volcanic area of Co. Limerick. Proc Geol Assoc 50:324–330

    Google Scholar 

  • Banks DA, Boyce AJ, Samson IM (2002) Constraints on the origins of fluids forming Irish Zn-Pb-Ba deposits: Evidence from the composition of fluid inclusions. Econ Geol 97:471–480

    Article  Google Scholar 

  • Brand BD, Clarke AB (2009) The architecture, eruptive history, and evolution of the Table Rock Complex, Oregon: from a Surtseyan to an energetic maar eruption. Volcanol Geotherm Res 180:203–224

    Article  Google Scholar 

  • Branney MJ, Kokelaar P (2002) Pyroclastic density of ignimbrites. Geological Society, London. Special Publications No 27

  • Brown RJ, Field M, Gernon TM, Gilbertson M, Sparks RSJ (2008b) Problems with an in-vent column collapse model for the emplacement of massive volcaniclastic kimberlite. A discussion of ’In-vent column collapse as an alternative model for massive volcaniclastic kimberlite emplacement: an example from the Fox kimberlite, Ekati Diamond Mine, NWT, Canada’ by Porritt et al. [J Volcanol Geotherm Res 174, 90–102]. J Volcanol Geotherm Res 178:847–850

    Article  Google Scholar 

  • Brown RJ, Gernon T, Stiefenhofer J, Field M (2008a) Geological constraints on the eruption of the Jwaneng Centre kimberlite pipe, Botswana. J Volcanol Geotherm Res 174:195–208

    Article  Google Scholar 

  • Calvari S, Tanner LH (2011) The Miocene Costa Giardini diatreme, Iblean Mountains, southern Italy: Model for maar-diatreme formation on a submerged carbonate platform. Bull Volcanol 73:557–576

    Article  Google Scholar 

  • Cas RAF, Wright JV (1988) Volcanic successions: Modern and ancient, 2nd edn. Unwin Hyman Ltd, London

    Google Scholar 

  • Cas RAF, Porrit L., Pittari A, Hayman P (2008) A new approach to kimberlite facies terminology using a revised general approach to the nomenclature of all volcanic rocks and deposits: Descriptive to genetic. J Volcanol Geotherm Res 174:226–240

    Article  Google Scholar 

  • Cas RAF , Wright JV (1991) Subaqueous pyroclastic flows and ignimbrites: an assessment. Bull Volcanol 53:357–380

    Article  Google Scholar 

  • Davies AGS, Cooke DR, Gemmell JB, Simpson KA (2008) Diatreme breccias at the Kelian gold mine, Kalimantan, Indonesia: precursors to epithermal gold mineralization. Econ Geol 103:689–716

    Article  Google Scholar 

  • Delpit S, Ross P-S, Hearn BC (2014) Deep-bedded ultramafic diatremes in the Missouri River Breaks volcanic field, Montana, USA: 1 km of syn-eruptive subsidence. Bull Volcanol 76:832–854

    Article  Google Scholar 

  • Field M, Scott Smith B (1999) Contrasting geology and near-surface emplacement of kimberlite pipes in Southern Africa and Canada. In: Gurney JJ, Gurney ML, Pascoe MD, Richardson SH (eds) Proceedings of the VII th International Kimberlite Conference, vol 1, pp 214–237

  • Fisher RV (1961) Proposed classification of volcaniclastic sediments and rocks. Geol Soc Am Bull 72:1409–1414

    Article  Google Scholar 

  • Fisher RV, Waters AC (1970) Base surge bed forms in maar volcanoes. Am J Sci 268:157–180

    Article  Google Scholar 

  • Fisher RV (1984) Pyroclastic rocks. Springer-Verlag, Berlin Heidelberg

    Book  Google Scholar 

  • Fiske RS, Cashman KV, Shibata A, Watanabe K (1998) Tephra dispersal from Myojinsho, Japan, during its shallow submarine eruption of 1952-1953. Bull Volcanol 59:262–275

    Article  Google Scholar 

  • Francis EH (1970) Bedding in Scottish (Fifeshire) tuff-pipes and its relevance to maars and calderas. Bull Volcanol 34:697–712

    Article  Google Scholar 

  • Gallagher SJ, Somerville ID (2003) Lower Carboniferous (Late Visèan) platform development and cyclicity in Southern Ireland: foraminiferal biofacies and lithofacies evidence. Rivista Italiana di Paleontologia e Stratigrafia 109:159–171

    Google Scholar 

  • Geikie A (1897) The ancient volcanoes of Great Britain. Vol. 1 and 2. McMilland & Co.

  • Gernon T, Brown RJ, Tait MA, Hincks TK (2012) The origin of pelletal lapilli in explosive kimberlite eruptions. Nat Commun 3:1–7

    Article  Google Scholar 

  • Gernon TM, Field M., Sparks RSJ (2009a) Depositional processes in a kimberlite crater: the Upper Cretaceous Orapa South Pipe (Botswana). Sedimentology 56:623–643

    Article  Google Scholar 

  • Gernon TM, Gilbertson MA, Sparks RSJ, Field M (2008) Gas-fluidisation in an experimental tapered bed: Insights into processes in diverging volcanic conduits. J Volcanol Geotherm Res 174:49–56

    Article  Google Scholar 

  • Gernon TM, Gilbertson MA, Sparks RSJ, Field M (2009b) The role of gas-fluidisation in the formation of massive volcaniclastic kimberlite. Lithos 112, Supplement 1:439–451

    Google Scholar 

  • Gernon TM, Upton BGJ, Hincks TK (2013) Eruptive history of an alkali basaltic diatreme from Elie Ness, Fife, Scotland. Bull Volcanol 75:704–724

    Article  Google Scholar 

  • Graettinger AH, Valentine GA, Sonder I, Ross P-S, White JDL, Taddeucci J (2014) Maar-diatreme geometry and deposits: Subsurface blast experiments with variable explosion depth. Geochemistry, Geophysics, Geosystems 15:740–764

    Article  Google Scholar 

  • Gregg TKP, Fink JH (1995) Quantification of submarine lava-flow morphology through analog experiments. Geology 23:73–76

    Article  Google Scholar 

  • Griffiths RW (1992) Solidification and morphology of submarine lavas: a dependence on extrusion rate. J Geophys Res 97:729–737

    Google Scholar 

  • Hawthorne JB (1975) Model of a kimberlite pipe. Phys Chem Earth 9:1–15

    Article  Google Scholar 

  • Heiken G (1972) An atlas of volcanic ash. Smithson Contrib Earth Sci 12:1–101

    Google Scholar 

  • Hitzman MW (1995) Geological setting of the Irish Zn-Pb-(Ba-Ag) Orefield. In: Anderson K, Ashton J, Earls G, Hitzman M, Tear S (eds) Irish Carbonate-hosted Zn-Pb Deposits. Vol. 21 of Guidebook Series. Society of Economic Geologists, pp 3–24

  • Hitzman MW, Beaty DW (1996) The Irish Zn-Pb-(Ba) Orefield. Soc Econ Geol Spec Publ 4:112–143

    Google Scholar 

  • Hitzman MW, Redmond PB, Beaty DW (2002) The carbonate-hosted Lisheen Zn-Pb-Ag deposit, County Tipperary, Ireland. Econ Geol 97:1627–1655

    Article  Google Scholar 

  • Holland CH, Sanders IS (2009) The Geology of Ireland, 2nd edn. Dunedin Academic Press

  • Houghton BF , Wilson CJN (1989) A vesicularity index for pyroclastic deposits. Bull Volcanol 51:451–462

    Article  Google Scholar 

  • Houghton BF, Smith RT (1993) Recycling of magmatic clasts during explosive eruptions: estimating the true juvenile content of phreatomagmatic volcanic deposits. Bull Volcanol 55:414–420

    Article  Google Scholar 

  • Houghton BF, Wilson CJN, Smith IEM (1999) Shallow-seated controls on styles of explosive basaltic volcanism: a case study from New Zealand. Journal of Volcanology and Geothermal Research 91:97–120

    Article  Google Scholar 

  • Humphris SE, Thompson G (1978) Hydrothermal alteration of oceanic basalts by seawater. Geochimica et Cosmochimica Acta 42:107–125

    Article  Google Scholar 

  • Ingram RL (1964) Terminology for the thickness of stratification and parting units in sedimentary units. Bull Geol Society of America 86:937–938

    Google Scholar 

  • Kneller B , Branney MJ (1995) Sustained high-density turbdity currents and the deposition of thick massive sands. Sedimentology 42:607–616

    Article  Google Scholar 

  • Kokelaar BP (1983) The mechanism of Surtseyan volcanism. J Geol Society of London 140:939–944

    Article  Google Scholar 

  • Kokelaar BP (1986) Magma-water interactions in subaqueous and emergent basaltic volcanism. Bull Volcanol 48:275–289

    Article  Google Scholar 

  • Kurszlaukis S , Barnett W (2003) Volcanological and structural aspects of the Venetia kimberlite cluster - as case study of South African kimberlite maar-diatreme volcanoes. South African J Geol 106:145–172

    Google Scholar 

  • Kurszlaukis S , Franz L , Lorenz V (1998) On the volcanology of the Gibeon kimberlite field, Namibia. J Volcanol Geother Res 84:257–272

    Article  Google Scholar 

  • Kurszlaukis S , Lorenz V (1997) Volcanological features of a low-viscosity melt: the carbonatitic Gross Brukkaros volcanic field, Namibia. Bull Volcanol 58:421–431

    Article  Google Scholar 

  • Leahy K (1997) Discrimination of reworked pyroclastics from primary tephra-fall tuffs: a case study using kimberlites of Fort a la Corne, Saskatchewan, Canada. Bull Volcanol 59:65–71

    Article  Google Scholar 

  • Lees A , Miller J (1985) Facies variation in Waulsortian buildups. part 2; Mid-Dinantian buildups from Europe and North America. Geol J 20:159–180

    Article  Google Scholar 

  • Lefebvre NS , White JDL, Kjarsgaard BA (2013) Unbedded diatreme deposits reveal maar-diatreme-forming eruptive processes: Standing Rocks West, Hopi Buttes, Navajo Nation, USA. Bull Volcanol 75:739–756

    Article  Google Scholar 

  • Lloyd FE, Stoppa F (2003) Pelletal lapilli in diatremes—some inspiration from the old masters. GeoLines 15:65–71

    Google Scholar 

  • Lorenz V (1975) Formation of phreatomagmatic maar-diatreme volcanoes and its relevance to kimberlite diatremes. Phys Chem Earth 9:17–27

    Article  Google Scholar 

  • Lorenz V (1985) Maars and diatremes of phreatomagmatic origin: a review. Transac Geol Society of South Africa 88:459–470

    Google Scholar 

  • Lorenz V (1986) On the growth of maars and diatremes and its relevance to the formation of tuff rings. Bull Volcanol 48:265–274

    Article  Google Scholar 

  • Lorenz V (2003) Maar-diatreme volcanoes, their formation, and their setting in hard-rock or soft-rock environments. Geolines 15:72–83

    Google Scholar 

  • Lorenz V (2007) Syn- and posteruptive hazards of maar-diatreme volcanoes. J Volcanol Geother Res 159:285–312

    Article  Google Scholar 

  • Lorenz V , Kurszlaukis S (2007) Root zone processes in the phreatomagmatic pipe emplacement model and consequences for the evolution of maar–diatreme volcanoes. J Volcanol Geother Res 159:4–32

    Article  Google Scholar 

  • Lorenz V, Zimanowski B, Buettner R (2002) On the formation of deep-seated subterranean peperite-like magma-sediment mixtures. J Volcanol Geother Res 114:107–118

    Article  Google Scholar 

  • MacLean WH (1980) Mass change calculations in altered rock series. Miner Deposita 25:44–49

    Article  Google Scholar 

  • Mangan MT, Cashman KV (1996) The structure of basaltic scoria and reticulite and inferences for vesiculation, foam formation, and fragmentation in lava fountains. J Volcanol Geother Res 73:1–18

    Article  Google Scholar 

  • Mattsson HB (2010) Textural variation in juvenile pyroclasts from an emergent, Surtseyan-type, volcani eruption: the Capelas tuff cone, Sao Miguel (Azores). J Volcanol Geother Res 189:81–91

    Article  Google Scholar 

  • Mattsson HB, Hoskuldsson A, Hand S (2005) Crustal xenoliths in the 6220 BP saefell tuff-cone, south Iceland: Evidence for a deep, diatreme-forming, Surtseyan eruption. J Volcanol Geother Res 145:234–248

    Article  Google Scholar 

  • McClintock M, White JDL (2006) Large phreatomagmatic vent complex at Coombs Hills, Antarctica: wet, explosive initiation of flood basalt volcanism in the Ferrar-Karoo LIP. Bull Volcanol 68:215–239

    Article  Google Scholar 

  • McCusker J, Reed C (2013) The role of intrusions in the formation of Irish-type mineralisation. Miner Deposita 48:687–695

    Article  Google Scholar 

  • Mitchell RH (1990) Kimberlites and lamproites: Primary sources of diamond. Geoscience Canada 18:1–16

    Google Scholar 

  • Moore JG (1985) Structure and eruptive mechanisms at Surtsey Volcano, Iceland. Geol Mag 122:649–661

    Article  Google Scholar 

  • Mueller W, White JDL (1992) Felsic fire-fountaining beneath Archean seas: Pyroclastic deposits of the 2730 Ma Hunter Mine Group, Quebec, Canada. J Volcanol Geother Res 54:117–134

    Article  Google Scholar 

  • Mundula F , Cioni R , Funedda A, Leone F (2013) Lithofacies characteristics of diatreme deposits: Examples from a basaltic volcanic field of SW Sardinia (Italy). J Volcanol Geother Res 255:1–14

    Article  Google Scholar 

  • Nemec W, Steel RJ (1984) Alluvial and coastal conglomerates: their significant features and some comments on gravelly mass-flow deposits. In: Sedimentology of Gravels and Conglomerates. Vol. 10. Canadian Society of Petroleum Geology Memoirs, pp 1–31

  • Nemeth K, Martin U, Harangi S (2001) Miocene phreatomagmatic volcanism at Tihany (Pannonian Basin, Hungary). J. Volcanol Geother Res 111:111–135

    Article  Google Scholar 

  • Pittari A, Cas RAF, Lefebvre NS, Robey J, Kurszlaukis S, Webb K (2008) Eruption processes and facies architecture of the Orion Central kimberlite volcanic complex, Fort á la Corne, Saskatchewan; kimberlite mass flow deposits in a sedimentary basin. J Volcanol Geother Res 174:152–170

    Article  Google Scholar 

  • Porritt LA, Cas RAF, Crawford BB (2008) In-vent column collapse as an alternative model for massive volcaniclastic kimberlite emplacement: an example from the Fox kimberlite, Ekati Diamond Mine, NWT, Canada. J Volcanol Geother Res 174:90–102

    Article  Google Scholar 

  • Redmond PB (2010) The Limerick Basin: an important emerging subdistrict of the Irish Zn-Pb orefield. Soc Econ Geol Newsl 82:21–25

    Google Scholar 

  • Riding R (1975) Girvanella and other algae as depth indicators. Lethaia 8:173–179

    Article  Google Scholar 

  • Rollinson H (1993) Using geochemical data: Evaluation, presentation, interpretation. Pearson Education Limited

  • Ross P-S, White JDL (2006) Debris jets in continental phreatomagmatic volcanoes: a field study of their subterranean deposits in the Coombs Hills vent complex, Antarctica. J Volcanol Geother Res 149:62–84

    Article  Google Scholar 

  • Ross P-S, White JDL (2012) Quantification of vesicle characteristics in some diatreme-filling deposits, and the explosivity levels of magma-water interactions within diatremes. J Volcanol Geother Res 245:55–67

    Article  Google Scholar 

  • Ross P-S, White J, Zimanowski B , Büttner R (2008) Rapid injection of particles and gas into non-fluidized granular material, and some volcanological implications. Bull Volcanol 70:1151–1168

    Article  Google Scholar 

  • Ross P-S, White J, Zimanowski B, Büttner R (2008) Multiphase flow above explosion sites in debris-filled volcanic vents: Insights from analogue experiments. J Volcanol Geother Res 178:104–112

    Article  Google Scholar 

  • Rottas KM, Houghton BF (2012) Structure, stratigraphy, and eruption dynamics of a young tuff ring: Hanauma Bay, O’ahu, Hawai’i. Bull Volcanol 74:1683–1697

    Article  Google Scholar 

  • Sahagian DL, Proussevitch AA (1998) 3D particle size distributions form 2D observations: Stereology for natural applications. J Volcanol Geother Res 84:173–196

    Article  Google Scholar 

  • Seyfried WE, Mottl M J (1982) Hydrothermal alteration of basalt by seawater under seawater-dominated conditions. Geochimica et Cosmochimica Acta 46:985–1002

    Article  Google Scholar 

  • Shea T, Houghton BF, Gurioli L, Cashman KV, Hammer JE, Hobden, BJ (2010) Textural studies of vesicles in volcanic rocks: an integrated methodology. J Volcanol Geother Res 190:271–289

    Article  Google Scholar 

  • Shimano T, Nakada S (2006) Vesiculation path of ascending magma in the 1983 and the 2000 eruptions of Miyakejima volcano, Japan. Bull Volcanol 68:549–566

    Article  Google Scholar 

  • Sohn YK (1996) Hydrovolcanic processes forming basaltic tuff rings and cones on Cheju Island, Korea. Geol Soc Am Bull 108:1199–1211

    Article  Google Scholar 

  • Somerville ID , Strogen P (1992) Ramp sedimentation in the Dinantian limestones of the Shannon Trough, Co. Limerick, Ireland. Sedimentary Geol 79:59–75

    Article  Google Scholar 

  • Somerville ID, Strogen P, Jones GL (1992) Biostratigraphy of Dinantian limestones and associated volcanic rocks in the Limerick Syncline, Ireland. Geol J 27:201–220

    Article  Google Scholar 

  • Sottili G, Taddeucci J, Palladino DM, Gaeta M, Scarlato P, Ventura G (2009) Sub-surface dynamics and eruptive styles of maars in the Colli Albani Volcanic District, Central Italy. J Volcanol Geother Res 180:189–202

    Article  Google Scholar 

  • Sparks RSJ, Baker L, Brown RJ, Field M, Schumacher J, Stripp G, Walters A (2006) Dynamical constraints on kimberlite volcanism. J Volcanol Geother Res 155:18–48

    Article  Google Scholar 

  • Strogen P (1983) The geology of the volcanic rocks of southeast County Limerick. Ph.D. thesis.University College Dublin

  • Strogen P (1988) The carboniferous lithostratigraphy of southeast County Limerick, Ireland, and the origin of the shannon trough. Geol J 23:121–137

    Article  Google Scholar 

  • Strogen P, Somerville ID, Pickard NAH, Jones GL, Fleming M (1996) Controls on ramp, platform and basinal sedimentation in the Dinantian of the Dublin Basin and Shannon Trough, Ireland. Geological Society, London. Spec Publ 107:263–279

    Article  Google Scholar 

  • Timmerman MJ (2004) Timing, geodynamic setting and character of Permo-Carboniferous magmatism in the foreland of the Variscan Orogen, NW Europe. In: Wilson M, Neumann E R, Davies G R, Timmerman M J, Heeremans M, Larsen B T (eds) Permo-Carboniferous Magmatism And Rifting in Europe, vol 223. Geol Soc, London, pp 41–74

  • Tsukui M, Suzuki Y (1995) Vesiculation of basaltic magma: Magmatic versus phreatomagmatic eruption in 1983 eruption of Miyakejima. Volcanol Soc Japan 40:395–399

    Google Scholar 

  • Utzmann A, Hansteen TH, Schminke HU (2002) Trace element mobility during sub-seafloor alteration of basaltic glass from Ocean Drilling Program site 953 (off Gran Canaria). Int J Earth Sci 91:661–679

    Article  Google Scholar 

  • Valentine GA (2012) Shallow plumbing systems for small-volume basaltic volcanoes, 2: evidence from crustal xenoliths at scoria cones and maars. J Volcanol Geother Res 223:47–63

    Article  Google Scholar 

  • Valentine GA, White JD (2012) Revised conceptual model for maar-diatremes: Subsurface processes, energetics, and eruptive products. Geology 40:1111–1114

    Article  Google Scholar 

  • Walters AL, Phillips JC, Brown RJ, Field M, Gernon T, Stripp G, Sparks RSJ (2006) The role of fluidisation in the formation of volcaniclastic kimberlite: Grain size observations and experimental investigation. J Volcanol Geother Res 155:119–137

    Article  Google Scholar 

  • White JDL (1991) Maar-diatreme phreatomagmatism at Hopi Buttes, Navajo Nation (Arizona), USA. Bull Volcanol 53:239–258

    Article  Google Scholar 

  • White JDL (1996) Pre-emergent construction of a lacustrine basaltic volcano, Pahvant Butte, Utah USA. Bull Volcanol 58:249–262

    Article  Google Scholar 

  • White JDL (2000) Subaqueous eruption-fed density currents and their deposits. Precambrian Res 101:87–109

    Article  Google Scholar 

  • White JDL, Houghton BF (2006) Primary volcaniclastic rocks. Geology 34:677

    Article  Google Scholar 

  • White JDL, Ross P-S (2011) Maar-diatreme volcanoes: a review. J Volcanol Geother Res 201:1–29

    Article  Google Scholar 

  • Wilkinson JJ, Eyre SL, Boyce AJ (2005) Ore-forming processes in Irish-Type carbonate-hosted Zn-Pb deposits: Evidence from mineralogy, chemistry, and isotopic composition of sulfides at the Lisheen Mine. Econ Geol 100:63–86

    Article  Google Scholar 

  • Wilson B, Neumann ER, Davies GR, Timmerman MJ, Heeremans M, Larsen BT (2004) Permo-carboniferous magmatism and rifting in Europe. Special Publications. Geological Society of London, London

  • Wohletz KH, McQueen RC (1984) Experimental studies of hydromagmatic volcanism. In: Boyd F R, Boettcher A L, Company (eds) Explosive volcanism: Inception, evolution, and hazards. National Academy Press, pp 158–170

  • Wood A (1957) The type-species of the genus Girvanella (calcareous algae). Palaeontology 1:22–28

    Google Scholar 

  • Woodcock NH, Strachan R (2000) Geological history of Britain and Ireland. Blackwell Science, Oxford

    Google Scholar 

  • Zhou Y, Bohor BF, Ren Y (2000) Trace element geochemistry of altered volcanic ash layers (tonsteins) in Late Permian coal-bearing formations of eastern Yunnan and western Guizhou Provinces, China. Int J Coal Geol 44:305–324

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Teck Ireland Ltd. for funding this study. We would particularly like to thank the Teck team at Limerick, including Ashley Murray, Jim McCusker and Chris Reed for their helpful discussions and knowledge of the country rock stratigraphy and to the support staff for helping move many heavy boxes of core. We would also like to thank the editor, James White and the reviewers of this manuscript including an anonymous reviewer, Richard Brown and Pierre-Simon Ross for their helpful and detailed comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. L. Elliott.

Additional information

Editorial responsibility: P-S Ross

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elliott, H.A.L., Gernon, T.M., Roberts, S. et al. Basaltic maar-diatreme volcanism in the Lower Carboniferous of the Limerick Basin (SW Ireland). Bull Volcanol 77, 37 (2015). https://doi.org/10.1007/s00445-015-0922-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-015-0922-2

Keywords

Navigation