Skip to main content

Advertisement

Log in

Reconstructing the largest explosive eruptions of Mt. Ruapehu, New Zealand: lithostratigraphic tools to understand subplinian–plinian eruptions at andesitic volcanoes

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

We analysed the tephra record of Mt. Ruapehu for the period 27,097 ± 957 to ~10,000 cal. years BP to determine the largest-scale explosive eruptions expected from the most active New Zealand andesitic volcano. From the lithostratigraphic analysis, a systematic change in the explosive behaviour is identified from older deposits suggesting dry magmatic eruptions and steady eruptive columns, characterised by frothy to expanded pumice fabrics, to younger deposits that are products of unsteady conditions and collapsing columns, characterised by microvesicular, fibrous, and colour-banded pumice fabrics. The end-members were separated by eruptions with steady columns linked to water–magma interaction and highly unstable conduit walls. Dry magmatic eruptions producing steady plinian columns were most common between 27,097 ± 957 and shortly after 13,635 + 165 cal. years BP. Following this time, activity continued with eruptions that produced dominantly oscillating unsteady columns, which engendered pyroclastic density currents, until ~10 ka when there was an abrupt transition at Mt. Ruapehu since which eruptions have been an order of magnitude lower in intensity and volume. These data demonstrate long-period transitions in eruption behaviour at an andesitic stratovolcano, which is critical to understand if realistic time-variable hazard forecasts are to be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Arana-Salinas L, Siebe C, Macías JL (2010) Dynamics of the ca. 4965 yr 14C BP “Ochre Pumice” Plinian eruption of Popocatépetl volcano, México. J Volcanol Geotherm Res 192:212–231

    Article  Google Scholar 

  • Arce JL, Macías JL, Vázquez SL (2003) The 10.5 Ka Plinian eruption of Nevado de Toluca, México: stratigraphy and hazard implications. Geol Soc Am Bull 115(2):230–248

    Article  Google Scholar 

  • Bonadonna C, Houghton BF (2005) Total grain-size distribution and volume of tephra-fall deposits. Bull Volcanol 67:441–456

    Article  Google Scholar 

  • Bursik M (1993) Subplinian eruption mechanisms inferred from volatile and clast dispersal data. J Volcanol Geotherm Res 57:47–60

    Article  Google Scholar 

  • Carey RJ, Houghton BF, Thordarsson T (2010) Abrupt shifts between wet and dry phases of the 1875 eruption of Askja Volcano: microscopic evidence for macroscopic dynamics. J Volcanol Geotherm Res 184:256–270

    Article  Google Scholar 

  • Carn SA, Pallister JS, Lara L, Ewert JW, Watt S, Prata AJ, Thomas RJ, Villarosa (2009) The unexpected awakening of Chaitén Volcano, Chile. EOS, Transactions American Geophysical Union 90(24):205–206

    Article  Google Scholar 

  • Cashman KV, Blundy J (2000) Degassing and crystallization of ascending andesite and dacite. Phil Trans Roy Soc 358:1487–1513

    Article  Google Scholar 

  • Christenson BW, Wood CP (1993) Evolution of a vent-hosted hydrothermal system beneath Ruapehu Crater Lake, New Zealand. Bull Volcanol 55:547–565

    Article  Google Scholar 

  • Cioni R, Marianelli P, Stantacroce R, Sbrana A (2000) Plinian and subplinian eruptions. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopaedia of Volcanoes. Academic, San Diego, pp 477–494

    Google Scholar 

  • Cioni R, Sulpizio R, Garruccio N (2003) Variability of the eruption dynamics during a subplinian event: Greenish Pumice eruption of Somma-Vesuvius (Italy). J Volcanol Geotherm Res 124:89–114

    Article  Google Scholar 

  • Cole JW (1978) Andesites of Tongariro Volcanic Centre, North Island, New Zealand. J Volcanol Geotherm Res 3:121–153

    Article  Google Scholar 

  • Cole JW, Nairn IAI (1975) Catalogue of the active volcanoes of the world 22: New Zealand. International Association of Volcanology and Chemistry of the Earth’s Interior, Naples, pp 1–152

    Google Scholar 

  • Cole JW, Graham IJ, Hackett WR, Houghton BF (1986) Volcanology and petrology of the Quaternary composite volcanoes of Tongariro Volcanic Centre, Taupo Volcanic Zone. In: Smith IEM (ed) Late Cenozoic volcanism in New Zealand. Royal Society of New Zealand, New Zealand, pp 222–250

    Google Scholar 

  • Cronin SJ, Neall VE (1997) A late Quaternary stratigraphic framework for the northeastern Ruapehu and eastern Tongariro ring plains, New Zealand. NZ J Geol Geophys 40:179–191

    Google Scholar 

  • Cronin SJ, Neall VE, Palmer AS (1996a) Geological history of the northeastern ring plain of Ruapehu volcano, New Zealand. Quat Int 34(36):21–28

    Article  Google Scholar 

  • Cronin SJ, Neall VE, Stewart RB, Palmer AS (1996b) A multiple-parameter approach to andesitic tephra correlation, Ruapehu volcano, New Zealand. J Volcanol Geotherm Res 72:199–215

    Article  Google Scholar 

  • Cronin SJ, Neall VE, Palmer AS (1996c) Investigation of an aggrading paleosol developed into andesitic ring plain deposits, Ruapehu volcano, New Zealand. Geoderma 69:119–135

    Article  Google Scholar 

  • Cronin SJ, Hodgson KA, Neall VE, Palmer AS, Lecointre JA (1997a) 1995 Ruapehu lahars in relation to the late Holocene lahars of Whangaehu River, New Zealand. NZ J Geol Geophys 40:507–520

    Article  Google Scholar 

  • Cronin SJ, Neall VE, Palmer AS, Stewart RB (1997b) Methods of identifying late Quaternary rhyolitic tephras on the ring plains of Ruapehu and Tongariro volcanoes, New Zealand. NZ J Geol Geophys 40:175–184

    Article  Google Scholar 

  • Cronin SJ, Hedley MJ, Neall VE, Smith G (1998) Agronomic impact of tephra fallout from 1995 and 1996 Ruapehu volcano eruptions, New Zealand. Environ Geol 34:21–30

    Article  Google Scholar 

  • Cronin SJ, Neall VE, Lecointre JA, Hedley MJ, Loganathan P (2003) Environmental hazards of fluoride in volcanic ash: a case study from Ruapehu volcano, New Zealand. J Volcanol Geotherm Res 121:271–291

    Article  Google Scholar 

  • Donoghue SL (1991) Late Quaternary volcanic stratigraphy of the southeastern sector of the Ruapehu ring plain, New Zealand. PhD thesis, Massey University, Palmerston North, New Zealand

    Google Scholar 

  • Donoghue SL, Neall VE (2001) Late Quaternary constructional history of the southeastern Ruapehu ring plain, New Zealand. NZ J Geol Geophys 44:43–66

    Article  Google Scholar 

  • Donoghue SL, Gamble JG, Palmer AS, Stewart RB (1995a) Magma mingling in an andesite pyroclastic flow of the Pourahu Member, Ruapehu volcano, New Zealand. J Volcanol Geotherm Res 68:177–191

    Article  Google Scholar 

  • Donoghue SL, Neall VE, Palmer AS (1995b) Stratigraphy and chronology of late Quaternary andesitic tephra deposits, Tongariro Volcanic Centre, New Zealand. Roy Soc New Zealand 25(2):112–206

    Google Scholar 

  • Donoghue SL, Neall VE, Palmer AS, Stewart RB (1997) The volcanic history of Ruapehu during the last 2 millennia based on the record of the Tufa Trig Tephras. Bull Volcanol 59:136–146

    Article  Google Scholar 

  • Donoghue SL, Palmer AS, McClelland EA, Hobson K, Stewart RB, Neall VE, Lecointre J, Price R (1999) The Taurewa eruptive episode: evidence for climactic eruptions at Ruapehu volcano, New Zealand. Bull Volcanol 60:223–240

    Article  Google Scholar 

  • Donoghue S, Vallance J, Smith IEM, Stewart RB (2007) Using geochemistry as a tool for correlating proximal andesitic tephra: case studies from Mt. Rainier (USA) and Mt. Ruapehu (New Zealand). J Quat Sci 22(4):395–410

    Article  Google Scholar 

  • Froggatt PC, Lowe DJ (1990) A review of late Quaternary silicic and some other tephra formations from New Zealand: their stratigraphy, nomenclature, distribution, volume, and age. NZ J Geol Geophys 33:89–109

    Article  Google Scholar 

  • Gamble JA, Price RC, Smith IEM, McIntosh WC, Dunbar NW (2003) 40Ar/39Ar geochronology of magmatic activity, magma flux and hazards at Ruapehu volcano, Taupo Volcanic Zone, New Zealand. J Volcanol Geotherm Res 120:271–287

    Article  Google Scholar 

  • Graham IJ, Hackett WR (1987) Petrology of calc-alkaline lavas from Ruapehu Volcano and related vents, Taupo Volcanic Zone, New Zealand. J Petrol 28:531–567

    Google Scholar 

  • Graham LJ, Blattner P, McCulloch MT (1990) Metaigneous granulite xenoliths from Mount Ruapehu, New Zealand: fragments of altered oceanic crust? Contrib Mineral Petrol 105:650–661

    Article  Google Scholar 

  • Graham IJ, Cole JW, Briggs RM, Gamble JA, Smith IEM (1995) Petrology and petrogenesis of volcanic rocks from the Taupo Volcanic Zone: a review. J Volcanol Geotherm Res 68:59–87

    Article  Google Scholar 

  • Gregg DR (1960) The geology of Tongariro subdivision. New Zealand Geological Survey Bulletin 40

  • Gregg DR (1961) Volcanoes of Tongariro National park. In: N.Z. Department of Scientific and Industrial Research (eds) New Zealand Geological Survey Handbook, Information Series 28

  • Gurioli L, Houghton BF, Cashman KV, Cioni R (2005) Complex changes in eruption dynamics during the 79 AD eruption of Vesuvius. Bull Volcanol 67:144–159

    Article  Google Scholar 

  • Hackett WR (1985) Geology and petrology of Ruapehu Volcano and related vents, PhD thesis. Victoria University of Wellington, New Zealand

    Google Scholar 

  • Hackett WR, Houghton BF (1989) A facies model for a Quaternary andesitic composite volcano, Ruapehu, New Zealand. Bull Volcanol 51:51–68

    Article  Google Scholar 

  • Hammer JE, Cashman KV, Hoblitt RP, Newman S (1999) Degassing and microlite crystallization during pre-climactic events of the 1991 eruption of Mt. Pinatubo, Philippines. Bull Volcanol 60:355–380

    Article  Google Scholar 

  • Hitchcock DW, Cole JW (2007) Potential impacts of a widespread subplinian andesitic eruption from Tongariro volcano, based on a study of the Poutu Lapilli. NZ J Geol Geophys 50(1):53–66

    Article  Google Scholar 

  • Hobden BJ (1997) Modelling magmatic trends in time and space: eruptive and magmatic history of the Tongariro Volcanic Complex, New Zealand. PhD thesis, University of Canterbury, Christchurch, New Zealand

    Google Scholar 

  • Hobden BJ, Houghton BF, Lanphere MA, Nairn IA (1996) Growth of the Tongariro volcanic complex: new evidence from K/Ar age determinations. NZ J Geol Geophys 39:151–154

    Article  Google Scholar 

  • Houghton BF, Latter JH, Hackett WR (1987) Volcanic hazard assessment for Ruapehu composite volcano, Taupo Volcanic Zone, New Zealand. Bull Volcanol 49:737–751

    Article  Google Scholar 

  • Kilgour G, Manville V, Della Pasqua F, Graettinger A, Hodgson KA, Jolly GE (2010) The 25 September 2007 eruption of Mount Ruapehu, New Zealand: directed ballistics, surtseyan jets, and ice-slurry lahars. J Volcanol Geotherm Res 191:1–14

    Article  Google Scholar 

  • Lara L (2009) The 2008 eruption of the Chaitén Volcano, Chile: a preliminary report. Andean Geology 36(1):125–129

    Article  Google Scholar 

  • Lecointre JA, Nell VE, Palmer A (1998) Quaternary lahar stratigraphy of the western Ruapehu ring plain, New Zealand. NZ J Geol Geophys 41:225–245

    Article  Google Scholar 

  • Lecointre JA, Nell VE, Wallace RC (2004) Late Quaternary evolution of the Rotoaira Basin, northern Tongariro ring plain, New Zealand. NZ J Geol Geophys 47:549–565

    Article  Google Scholar 

  • Lowe DJ, Shane PAR, Alloway BV, Newnham RM (2008) Fingerprints and age models for widespread New Zealand tephra marker beds erupted since 30,000 years ago: a framework for NZ-INTIMATE. Quat Sci Rev 27:95–126

    Article  Google Scholar 

  • Lube G, Cronin SJ, Procter J (2009) Explaining the extreme mobility of volcanic ice-slurry flows, Ruapehu volcano, New Zealand. Geology 37(1):15–18

    Article  Google Scholar 

  • Macedonio G, Dobran F, Neri A (1994) Erosion processes in volcanic conduits and application to the AD 79 eruption of Vesuvius. Earth Planet Sci Lett 121(1–2):137–152

    Article  Google Scholar 

  • Manville V, Hodgson KA, Houghton BF, Keys JR, White JD (2000) Tephra, snow and water: complex sedimentary responses at an active snow-capped stratovolcano, Ruapehu, New Zealand. Bull Volcanol 62:278–293

    Article  Google Scholar 

  • Manville V, Németh K, Kano K (2009) From source to sink: a review of three decades of progress in the understanding of volcaniclastic processes, deposits, and hazards. Sediment Geol 220:136–161

    Article  Google Scholar 

  • McClelland E, Erwin PS (2003) Was a dacite dome implicated in the 9,500 B.P. collapse of Mt. Ruapehu? A palaeomagnetic investigation. Bull Volcanol 65:294–305

    Article  Google Scholar 

  • Nairn IA, Wood CP, Hewson CAY (1979) Phreatic eruptions of Ruapehu: April 1975. NZ J Geol Geophys 22:155–173

    Article  Google Scholar 

  • Nairn IA, Kobayashi T, Nakagawa M (1998) The 10 ka multiple vent pyroclastic eruption sequence at Tongariro Volcanic Centre, Taupo Volcanic Zone, New Zealand: part 1. Eruptive processes during regional extension. J Volcanol Geotherm Res 86(1–4):19–44

    Article  Google Scholar 

  • Nakagawa M, Nairn IA, Kobayashi T (1998) The ∼10 ka multiple vent pyroclastic eruption sequence at Tongariro Volcanic Centre, Taupo Volcanic Zone, New Zealand, part 2. Petrological insights into magma storage and transport during regional extension. J Volcanol Geotherm Res 86:45–65

    Article  Google Scholar 

  • Nakagawa M, Wada K, Wood PC (2002) Mixed magmas, mush chambers and eruption triggers: evidence from zoned clinopyroxene phenocrysts in andesitic scoria from the 1995 eruptions of Ruapehu Volcano, New Zealand. J Petrol 43(12):2279–2303

    Article  Google Scholar 

  • Neall VE, Cronin SJ, Donoghue SL, Hodgson KA, Lecointre JA, Purves AM (1995) The potential volcanic threat at Ruapehu. New Zealand Ministry of Civil Defense. Tephra 14(2):18–21

    Google Scholar 

  • Neall VE, Cronin SJ, Donoghue SL, Hodgson KA, Lecointre JA, Palmer AS, Purves AM, Stewart RB (2001) Lahar hazards map for Ruapehu Volcano. Institute of Natural Resources—Massey University, Soil and Earth Sciences Occasional Publication 1

  • Newnham RM, Lowe DJ (2000) Fine-resolution pollen record of late glacial climate reversal from New Zealand. Geology 28:759–762

    Article  Google Scholar 

  • Newnham RM, Eden DN, Lowe DJ, Hendy CH (2003) Rerewhakaaitu Tephra, a land–sea marker for the Last Glacial Termination in New Zealand, with implications for global climate change. Quat Sci Rev 22:289–308

    Article  Google Scholar 

  • Palladino DM, Simei S, Kyriakopoulos K (2008) On magma fragmentation by conduit shear stress: evidence from the Kos Plateau Tuff, Aegean Volcanic Arc. J Volcanol Geotherm Res 178:807–817

    Article  Google Scholar 

  • Palmer BA, Neall VE (1989) The Murimotu Formation, 9500 year old deposits of a debris avalanche and associated lahars, Mount Ruapehu, North Island, New Zealand. NZ J Geol Geophys 32:477–486

    Article  Google Scholar 

  • Papale P, Neri A, Macedonio G (1998) The role of magma composition and water content in explosive eruptions, 1. Conduit ascent dynamics. J Volcanol Geotherm Res 87:75–93

    Article  Google Scholar 

  • Price RC, Gamble JA, Smith IEM, Stewart RB, Eggins S, Wright IC (2005) An integrated model for the temporal evolution of andesites and rhyolites and crustal development in New Zealand’s North Island. J Volcanol Geotherm Res 140(1–3):1–24

    Article  Google Scholar 

  • Procter JN, Cronin SJ, Zernack AV (2010) Landscape and sedimentary response to catastrophic debris avalanches, Western Taranaki, New Zealand. Sediment Geol 38(1):67–70

    Google Scholar 

  • Reyners M, Eberhart-Phillips D, Graham S, Yuichi N (2006) Imaging subduction from the trench to 300 km depth beneath the central North Island, New Zealand, with Vp and Vp/Vs. Geophys J Int 165:565–583

    Article  Google Scholar 

  • Rosi M, Landi P, Polacci M, Di Muro A, Zandomeneghi D (2004) Role of conduit shear on ascent of the crystal-rich magma feeding the 800-year-BP plinian eruption of Quilotoa volcano (Ecuador). Bull Volcanol 66:307–321

    Article  Google Scholar 

  • Shane P, Doyle LR, Nairn IA (2008) Heterogeneous andesite–dacite ejecta in 26–16.6 ka pyroclastic deposits of Tongariro Volcano, New Zealand: the product of multiple magma-mixing events. Bull Volcanol 70:517–536

    Article  Google Scholar 

  • Sieh K, Bursik M (1986) Most recent eruption of the Mono Craters, eastern central California. J Geophys Res 91:12539–12571

    Article  Google Scholar 

  • Simkin T, Siebert L (2000) Earth’s volcanoes and eruptions: an overview. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopaedia of volcanoes. Academic, San Diego, pp 249–261

    Google Scholar 

  • Smith GA (1991) Facies sequences and geometries in continental volcaniclastic sediments. In: Fisher RV, Smith GA (eds) Sedimentation in Volcanic Settings. Society of Economic Paleontologists and Mineralogist Special Publications 45, Tulsa, OK, pp 10–25

    Google Scholar 

  • Stewart RB, Price RC, Smith IEM (1996) Evolution of high-K arc magma, Egmont volcano, Taranaki, New Zealand: evidence from mineral chemistry. J Volcanol Geotherm Res 74:275–295

    Article  Google Scholar 

  • Taddeucci J, Wohletz KH (2001) Temporal evolution of the Minoan eruption (Santorini, Greece), as recorded by its plinian fall deposit and interlayered ash flow beds. J Volcanol Geotherm Res 109:299–317

    Article  Google Scholar 

  • Topping WW (1973) Tephrostratigraphy and chronology of late Quaternary eruptives from the Tongariro Volcanic Centre. New Zealand. NZ J Geol Geophys 16:397–423

    Article  Google Scholar 

  • Villamor P, Van Dissen R, Alloway BV, Palmer AS, Litchfield N (2010) The Rangipo fault, Taupo rift, New Zealand: an example of temporal slip-rate and single-event displacement variability in a volcanic environment. GSA Bull 119:529–547

    Article  Google Scholar 

  • Waight TE, Price RC, Stewart RB, Smith IEM, Gamble JA (1999) Stratigraphy and geochemistry of the Turoa area, with implications for andesite petrogenesis at Mt. Ruapehu, Taupo Volcanic Zone, New Zealand. NZ J Geol Geophys 42:513–532

    Article  Google Scholar 

  • White JDL, Houhghton BF (2006) Primary volcaniclastic rocks. Geology 34:677–680

    Article  Google Scholar 

  • Wilson CJN (2001) The 26.5 ka Oruanui eruption, New Zealand: an introduction and overview. J Volcanol Geotherm Res 112:133–174

    Article  Google Scholar 

  • Wilson L, Sparks RSJ, Walker GPL (1980) Explosive volcanic eruptions—IV. The control of magma properties and conduit geometry on eruption column behaviour. Geophys J Royal Astronom Soc 63:117–148

    Article  Google Scholar 

  • Wilson CJN, Rogan AM, Smith IEM, Northey DJ, Naim LA, Houghton BF (1984) Caldera volcanoes of the Taupo Volcanic Zone, New Zealand. J Geophys Res 89:8463–8484

    Article  Google Scholar 

  • Wilson CJN, Houghton BF, McWilliams MO, Lanphere MA, Weaver SD, Briggs RM (1995) Volcanic and structural evolution of Taupo Volcanic Zone, New Zealand: a review. J Volcanol Geotherm Res 68:1–28

    Article  Google Scholar 

  • Wright HMN, Cashman KV, Rosi M, Cioni R (2007) Breadcrust bombs as indicators of vulcanian eruption dynamics at Guagua Pichincha volcano, Ecuador. Bull Volcanol 69:281–300

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed by the New Zealand Foundation for Research Science and Technology Grant MAUX0401, “Living with Volcanic Risk” to SJC. We are also grateful for the support of the Tongariro Natural History Society Memorial Award to NP. We thank H. Keys, J. Johnson (Department of Conservation), and the Range Control staff of the NZ National Army camp at Waiouru for allowing access to the Tongariro National park and Army land. We also thank M. Brenna, G. Lube, A. Moebis, E. Phillips, J. Procter, and T. Wang for their support in the field; and V. Neall, B. Stewart, and I. Smith for the helpful discussion and comments. Exhaustive reviews by Drs. C. Siebe and G. Giordano were extremely useful and greatly improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Pardo.

Additional information

Editorial responsibility: H. Delgado-Granados

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pardo, N., Cronin, S.J., Palmer, A.S. et al. Reconstructing the largest explosive eruptions of Mt. Ruapehu, New Zealand: lithostratigraphic tools to understand subplinian–plinian eruptions at andesitic volcanoes. Bull Volcanol 74, 617–640 (2012). https://doi.org/10.1007/s00445-011-0555-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-011-0555-z

Keywords

Navigation